論文の概要: Match Stereo Videos via Bidirectional Alignment
- arxiv url: http://arxiv.org/abs/2409.20283v1
- Date: Mon, 30 Sep 2024 13:37:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-02 11:58:29.510484
- Title: Match Stereo Videos via Bidirectional Alignment
- Title(参考訳): 双方向アライメントによるステレオビデオのマッチング
- Authors: Junpeng Jing, Ye Mao, Anlan Qiu, Krystian Mikolajczyk,
- Abstract要約: 最近の学習に基づく手法は、独立ステレオペアのパフォーマンスの最適化に重点を置いており、ビデオの時間的矛盾につながる。
本稿では,新しいビデオ処理フレームワークBiDAStereoとプラグイン安定化ネットワークBiDAStabilizerを紹介する。
本稿では,自然景観に着目したリアルな合成データセットとベンチマークと,様々な都市景観のステレオカメラが捉えた実世界のデータセットを定性評価として提示する。
- 参考スコア(独自算出の注目度): 15.876953256378224
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Video stereo matching is the task of estimating consistent disparity maps from rectified stereo videos. There is considerable scope for improvement in both datasets and methods within this area. Recent learning-based methods often focus on optimizing performance for independent stereo pairs, leading to temporal inconsistencies in videos. Existing video methods typically employ sliding window operation over time dimension, which can result in low-frequency oscillations corresponding to the window size. To address these challenges, we propose a bidirectional alignment mechanism for adjacent frames as a fundamental operation. Building on this, we introduce a novel video processing framework, BiDAStereo, and a plugin stabilizer network, BiDAStabilizer, compatible with general image-based methods. Regarding datasets, current synthetic object-based and indoor datasets are commonly used for training and benchmarking, with a lack of outdoor nature scenarios. To bridge this gap, we present a realistic synthetic dataset and benchmark focused on natural scenes, along with a real-world dataset captured by a stereo camera in diverse urban scenes for qualitative evaluation. Extensive experiments on in-domain, out-of-domain, and robustness evaluation demonstrate the contribution of our methods and datasets, showcasing improvements in prediction quality and achieving state-of-the-art results on various commonly used benchmarks. The project page, demos, code, and datasets are available at: \url{https://tomtomtommi.github.io/BiDAVideo/}.
- Abstract(参考訳): ビデオステレオマッチングは、修正されたステレオビデオから一貫した格差マップを推定するタスクである。
この領域にはデータセットとメソッドの両方の改善の余地がかなりあります。
最近の学習に基づく手法は、独立ステレオペアのパフォーマンスの最適化に重点を置いており、ビデオの時間的矛盾につながる。
既存のビデオ手法では、時間次元のスライディングウインドウ操作が一般的であり、ウィンドウサイズに応じた低周波振動が生じることがある。
これらの課題に対処するために,隣接フレームの双方向アライメント機構を基本動作として提案する。
そこで我々は,新しいビデオ処理フレームワークBiDAStereoとプラグイン安定化ネットワークBiDAStabilizerを導入する。
データセットに関して、現在の合成オブジェクトベースと屋内データセットは、屋外の自然シナリオが欠如しているため、トレーニングとベンチマークに一般的に使用される。
このギャップを埋めるために、我々は自然のシーンに焦点を当てたリアルな合成データセットとベンチマークと、様々な都市のシーンでステレオカメラが捉えた実世界のデータセットを質的評価のために提示する。
ドメイン内、ドメイン外、ロバスト性評価に関する大規模な実験は、我々の手法とデータセットの寄与を示し、予測品質の改善を示し、様々な一般的なベンチマークで最先端の結果を得る。
プロジェクトページ、デモ、コード、データセットは以下の通りである。
関連論文リスト
- BVI-RLV: A Fully Registered Dataset and Benchmarks for Low-Light Video Enhancement [56.97766265018334]
本稿では,2つの異なる低照度条件下での様々な動きシナリオを持つ40のシーンからなる低照度映像データセットを提案する。
我々は、プログラム可能なモータードリーを用いて、通常の光で捉えた完全に登録された地上真実データを提供し、異なる光レベルにわたるピクセルワイドフレームアライメントのための画像ベースアプローチによりそれを洗練する。
実験の結果,Low-light Video enhancement (LLVE) における完全登録ビデオペアの重要性が示された。
論文 参考訳(メタデータ) (2024-07-03T22:41:49Z) - Match-Stereo-Videos: Bidirectional Alignment for Consistent Dynamic Stereo Matching [17.344430840048094]
最近の学習に基づく手法では, 一つのステレオペア上での最適性能が優先され, 時間的矛盾が生じている。
本研究では,隣接フレームの双方向アライメント機構を基本動作として開発する。
既存の手法とは異なり、我々はこのタスクを局所的なマッチングとグローバルアグリゲーションとしてモデル化する。
論文 参考訳(メタデータ) (2024-03-16T01:38:28Z) - DynamicStereo: Consistent Dynamic Depth from Stereo Videos [91.1804971397608]
ステレオビデオの相違を推定するためにDynamicStereoを提案する。
ネットワークは、その予測の時間的一貫性を改善するために、隣接するフレームからの情報をプールすることを学ぶ。
スキャンされた環境における人や動物の合成ビデオを含む新しいベンチマークデータセットであるDynamic Replicaも導入した。
論文 参考訳(メタデータ) (2023-05-03T17:40:49Z) - Mitigating Representation Bias in Action Recognition: Algorithms and
Benchmarks [76.35271072704384]
ディープラーニングモデルは、稀なシーンやオブジェクトを持つビデオに適用すると、パフォーマンスが悪くなります。
この問題にはアルゴリズムとデータセットの2つの異なる角度から対処する。
偏りのある表現は、他のデータセットやタスクに転送するとより一般化できることを示す。
論文 参考訳(メタデータ) (2022-09-20T00:30:35Z) - Inductive and Transductive Few-Shot Video Classification via Appearance
and Temporal Alignments [17.673345523918947]
本稿では,出現と時間的アライメントを行う数ショット映像分類の新しい手法を提案する。
提案手法は, 両方のデータセットにおいて, 従来手法と類似した, あるいは良好な結果が得られる。
論文 参考訳(メタデータ) (2022-07-21T23:28:52Z) - Towards Scale Consistent Monocular Visual Odometry by Learning from the
Virtual World [83.36195426897768]
仮想データから絶対スケールを取得するための新しいフレームワークであるVRVOを提案する。
まず、モノクロ実画像とステレオ仮想データの両方を用いて、スケール対応の異種ネットワークをトレーニングする。
結果として生じるスケール一貫性の相違は、直接VOシステムと統合される。
論文 参考訳(メタデータ) (2022-03-11T01:51:54Z) - HighlightMe: Detecting Highlights from Human-Centric Videos [62.265410865423]
我々は,人間中心のビデオからハイライト可能な抜粋を検出するために,ドメインとユーザに依存しないアプローチを提案する。
本研究では,時空間グラフ畳み込みを用いたオートエンコーダネットワークを用いて,人間の活動やインタラクションを検出する。
我々は,最先端の手法に比べて,人手によるハイライトのマッチングの平均精度が4~12%向上したことを観察した。
論文 参考訳(メタデータ) (2021-10-05T01:18:15Z) - Automatic Curation of Large-Scale Datasets for Audio-Visual
Representation Learning [62.47593143542552]
本稿では,自動データセットキュレーションのためのサブセット最適化手法について述べる。
本研究では,高視聴覚対応の映像を抽出し,自己監視モデルが自動的に構築されているにもかかわらず,既存のスケールのビデオデータセットと類似したダウンストリームパフォーマンスを達成できることを実証した。
論文 参考訳(メタデータ) (2021-01-26T14:27:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。