論文の概要: Match-Stereo-Videos: Bidirectional Alignment for Consistent Dynamic Stereo Matching
- arxiv url: http://arxiv.org/abs/2403.10755v1
- Date: Sat, 16 Mar 2024 01:38:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-19 21:54:53.962569
- Title: Match-Stereo-Videos: Bidirectional Alignment for Consistent Dynamic Stereo Matching
- Title(参考訳): Match-Stereo-Videos: Consistent Dynamic Stereo Matchingのための双方向アライメント
- Authors: Junpeng Jing, Ye Mao, Krystian Mikolajczyk,
- Abstract要約: 最近の学習に基づく手法では, 一つのステレオペア上での最適性能が優先され, 時間的矛盾が生じている。
本研究では,隣接フレームの双方向アライメント機構を基本動作として開発する。
既存の手法とは異なり、我々はこのタスクを局所的なマッチングとグローバルアグリゲーションとしてモデル化する。
- 参考スコア(独自算出の注目度): 17.344430840048094
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dynamic stereo matching is the task of estimating consistent disparities from stereo videos with dynamic objects. Recent learning-based methods prioritize optimal performance on a single stereo pair, resulting in temporal inconsistencies. Existing video methods apply per-frame matching and window-based cost aggregation across the time dimension, leading to low-frequency oscillations at the scale of the window size. Towards this challenge, we develop a bidirectional alignment mechanism for adjacent frames as a fundamental operation. We further propose a novel framework, BiDAStereo, that achieves consistent dynamic stereo matching. Unlike the existing methods, we model this task as local matching and global aggregation. Locally, we consider correlation in a triple-frame manner to pool information from adjacent frames and improve the temporal consistency. Globally, to exploit the entire sequence's consistency and extract dynamic scene cues for aggregation, we develop a motion-propagation recurrent unit. Extensive experiments demonstrate the performance of our method, showcasing improvements in prediction quality and achieving state-of-the-art results on various commonly used benchmarks.
- Abstract(参考訳): 動的ステレオマッチングは、ステレオビデオと動的オブジェクトとの一貫性のある相違を推定するタスクである。
近年の学習ベース手法では,一対のステレオペア上での最適性能が優先され,時間的矛盾が生じている。
既存のビデオ手法では、フレームごとのマッチングとウィンドウベースのコストアグリゲーションが時間次元にわたって適用され、ウィンドウサイズのスケールでの低周波発振につながる。
そこで本研究では,隣接フレームの双方向アライメント機構を基本動作として開発する。
さらに,一貫した動的ステレオマッチングを実現する新しいフレームワークBiDAStereoを提案する。
既存の手法とは異なり、我々はこのタスクを局所的なマッチングとグローバルアグリゲーションとしてモデル化する。
局所的に、隣接するフレームから情報をプールし、時間的整合性を改善するために、3重フレーム方式で相関を考察する。
グローバルに、シーケンス全体の一貫性を利用して、集約のための動的シーンキューを抽出するために、モーションプロパゲーション・リカレント・ユニットを開発する。
大規模実験により,提案手法の性能,予測精度の向上,各種ベンチマークの最先端結果の達成が示された。
関連論文リスト
- Match Stereo Videos via Bidirectional Alignment [15.876953256378224]
最近の学習に基づく手法は、独立ステレオペアのパフォーマンスの最適化に重点を置いており、ビデオの時間的矛盾につながる。
本稿では,新しいビデオ処理フレームワークBiDAStereoとプラグイン安定化ネットワークBiDAStabilizerを紹介する。
本稿では,自然景観に着目したリアルな合成データセットとベンチマークと,様々な都市景観のステレオカメラが捉えた実世界のデータセットを定性評価として提示する。
論文 参考訳(メタデータ) (2024-09-30T13:37:29Z) - Hierarchical Temporal Context Learning for Camera-based Semantic Scene Completion [57.232688209606515]
カメラによるセマンティックシーンの補完を改善するための,新たな時間的文脈学習パラダイムであるHTCLを提案する。
提案手法は,Semantic KITTIベンチマークで1st$をランク付けし,mIoUの点でLiDARベースの手法を超えている。
論文 参考訳(メタデータ) (2024-07-02T09:11:17Z) - Uncertainty Guided Adaptive Warping for Robust and Efficient Stereo
Matching [77.133400999703]
相関に基づくステレオマッチングは優れた性能を達成した。
固定モデルによる現在のメソッドは、さまざまなデータセットで均一に動作しない。
本稿では,ロバストなステレオマッチングのための相関を動的に計算する新しい視点を提案する。
論文 参考訳(メタデータ) (2023-07-26T09:47:37Z) - DynamicStereo: Consistent Dynamic Depth from Stereo Videos [91.1804971397608]
ステレオビデオの相違を推定するためにDynamicStereoを提案する。
ネットワークは、その予測の時間的一貫性を改善するために、隣接するフレームからの情報をプールすることを学ぶ。
スキャンされた環境における人や動物の合成ビデオを含む新しいベンチマークデータセットであるDynamic Replicaも導入した。
論文 参考訳(メタデータ) (2023-05-03T17:40:49Z) - A Convolutional-Attentional Neural Framework for Structure-Aware
Performance-Score Synchronization [12.951369232106178]
性能スコア同期は信号処理において重要なタスクである。
従来の同期手法は知識駆動アプローチを用いてアライメントを計算する。
構造スコア同期のための新しいデータ駆動方式を提案する。
論文 参考訳(メタデータ) (2022-04-19T11:41:21Z) - MixSTE: Seq2seq Mixed Spatio-Temporal Encoder for 3D Human Pose
Estimation in Video [75.23812405203778]
近年, 学習時間相関のため, 全フレームのボディジョイントを世界規模で考慮し, 2次元キーポイントシーケンスから3次元人間のポーズを推定する手法が提案されている。
本研究では,各関節の時間的動きを別々にモデル化する時間的変圧器ブロックと,関節間空間相関を有する変圧器ブロックを有するミキシングミキシングを提案する。
さらに、ネットワーク出力は、中央フレームから入力ビデオの全フレームに拡張され、入力と出力のベンチマーク間のコヒーレンスが改善される。
論文 参考訳(メタデータ) (2022-03-02T04:20:59Z) - 3D Skeleton-based Few-shot Action Recognition with JEANIE is not so
Na\"ive [28.720272938306692]
We propose a Few-shot Learning pipeline for 3D skeleton-based action recognition by Joint tEmporal and cAmera viewpoiNt alIgnmEnt。
論文 参考訳(メタデータ) (2021-12-23T16:09:23Z) - AdaStereo: An Efficient Domain-Adaptive Stereo Matching Approach [50.855679274530615]
本稿では,AdaStereoというドメイン適応型アプローチを提案する。
我々のモデルは、KITTI、Middlebury、ETH3D、DrivingStereoなど、複数のベンチマークで最先端のクロスドメイン性能を実現している。
提案手法は,様々なドメイン適応設定に対して堅牢であり,迅速な適応アプリケーションシナリオや実環境展開に容易に組み込むことができる。
論文 参考訳(メタデータ) (2021-12-09T15:10:47Z) - AdaStereo: A Simple and Efficient Approach for Adaptive Stereo Matching [50.06646151004375]
AdaStereoと呼ばれる新しいドメイン適応パイプラインは、ディープステレオマッチングネットワークにマルチレベル表現をアライメントすることを目的としている。
我々のAdaStereoモデルは、KITTI、Middlebury、ETH3D、DrivingStereoなど、複数のステレオベンチマークで最先端のクロスドメインパフォーマンスを実現しています。
論文 参考訳(メタデータ) (2020-04-09T16:15:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。