論文の概要: Fine-Tuning Personalization in Federated Learning to Mitigate Adversarial Clients
- arxiv url: http://arxiv.org/abs/2409.20329v1
- Date: Mon, 30 Sep 2024 14:31:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-02 07:56:35.975049
- Title: Fine-Tuning Personalization in Federated Learning to Mitigate Adversarial Clients
- Title(参考訳): 対人顧客を緩和するフェデレーション学習におけるファインチューニングのパーソナライズ
- Authors: Youssef Allouah, Abdellah El Mrini, Rachid Guerraoui, Nirupam Gupta, Rafael Pinot,
- Abstract要約: フェデレートラーニング(Federated Learning, FL)とは、複数のマシン(例えばクライアント)がデータをローカルに保持しながら一元的に学習できるようにする、魅力的なパラダイムである。
我々は、一部のクライアントが敵対できるFL設定を検討し、完全なコラボレーションが失敗する条件を導出する。
- 参考スコア(独自算出の注目度): 8.773068878015856
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Federated learning (FL) is an appealing paradigm that allows a group of machines (a.k.a. clients) to learn collectively while keeping their data local. However, due to the heterogeneity between the clients' data distributions, the model obtained through the use of FL algorithms may perform poorly on some client's data. Personalization addresses this issue by enabling each client to have a different model tailored to their own data while simultaneously benefiting from the other clients' data. We consider an FL setting where some clients can be adversarial, and we derive conditions under which full collaboration fails. Specifically, we analyze the generalization performance of an interpolated personalized FL framework in the presence of adversarial clients, and we precisely characterize situations when full collaboration performs strictly worse than fine-tuned personalization. Our analysis determines how much we should scale down the level of collaboration, according to data heterogeneity and the tolerable fraction of adversarial clients. We support our findings with empirical results on mean estimation and binary classification problems, considering synthetic and benchmark image classification datasets.
- Abstract(参考訳): フェデレートラーニング(Federated Learning, FL)は、複数のマシン(例えばクライアント)がデータをローカルに保持しながら一括学習できる、魅力的なパラダイムである。
しかし、クライアントのデータ分布の不均一性のため、FLアルゴリズムを用いて得られたモデルは、一部のクライアントのデータに対して不均一に動作する可能性がある。
パーソナライゼーションは、各クライアントが自身のデータに合わせて異なるモデルを持つと同時に、他のクライアントのデータから利益を得ることを可能にすることで、この問題に対処する。
我々は、一部のクライアントが敵対できるFL設定を検討し、完全なコラボレーションが失敗する条件を導出する。
具体的には、対立するクライアントの存在下で、補間されたパーソナライズされたFLフレームワークの一般化性能を分析し、フルコラボレーションが微調整されたパーソナライゼーションよりもはるかに悪い場合を正確に特徴付ける。
我々の分析は、データの不均一性と耐え難い少数の敵クライアントによって、どの程度のコラボレーションレベルをスケールダウンすべきかを決定する。
合成画像分類データセットとベンチマーク画像分類データセットを考慮し,平均推定と二項分類問題に関する実証的な結果を得た。
関連論文リスト
- An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
フェデレートラーニング(FL)は、分散データセットからの知識を活用する効果に頼っている。
従来のFLメソッドでは、クライアントが前回のトレーニングラウンドからサーバが集約したグローバルモデルに基づいてローカルモデルを更新するアグリゲート-then-adaptフレームワークを採用している。
我々は,新しいアグリゲーションフリーFLアルゴリズムであるFedAFを紹介する。
論文 参考訳(メタデータ) (2024-04-29T05:55:23Z) - How to Collaborate: Towards Maximizing the Generalization Performance in
Cross-Silo Federated Learning [12.86056968708516]
フェデレートクラスタリング(FL)は、プライバシを保存する分散学習フレームワークとして、鮮明な注目を集めている。
本研究では、クライアントがFLデータの後、モデルオーナーとなるクロスサイロFLに焦点を当てる。
我々は、より多くのトレーニングデータを持つ他のクライアントと協調することで、クライアントのパフォーマンスを改善できると定式化します。
論文 参考訳(メタデータ) (2024-01-24T05:41:34Z) - Towards Instance-adaptive Inference for Federated Learning [80.38701896056828]
Federated Learning(FL)は、複数のクライアントがローカルトレーニングを集約することで、強力なグローバルモデルを学ぶことができる分散学習パラダイムである。
本稿では,FedInsという新しいFLアルゴリズムを提案する。
我々のFedInsは、Tiny-ImageNet上での通信コストが15%未満で、トップパフォーマンスの手法に対して6.64%の改善など、最先端のFLアルゴリズムよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-11T09:58:47Z) - Personalized Federated Learning via Amortized Bayesian Meta-Learning [21.126405589760367]
我々は,Amortized Bayesian Meta-Learningを通じて,パーソナライズド・フェデレーション・ラーニングの新しい視点を紹介する。
具体的には,クライアント間の階層的変動推論を用いたemphFedABMLという新しいアルゴリズムを提案する。
我々の理論解析は平均一般化誤差の上限を提供し、未知のデータに対する一般化性能を保証する。
論文 参考訳(メタデータ) (2023-07-05T11:58:58Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
本稿では,ガウス混合モデル(GMM)を用いたPFL(Personalized Federated Learning)を提案する。
FedGMMはオーバーヘッドを最小限に抑え、新しいクライアントに適応する付加的なアドバンテージを持ち、不確実な定量化を可能にします。
PFL分類と新しいサンプル検出の両方において, 合成データセットとベンチマークデータセットの実証評価により, 提案手法の優れた性能を示した。
論文 参考訳(メタデータ) (2023-05-01T20:04:46Z) - When to Trust Aggregated Gradients: Addressing Negative Client Sampling
in Federated Learning [41.51682329500003]
本稿では,各ラウンドにおける集約勾配に対するサーバ学習率を調整するための新しい学習率適応機構を提案する。
我々は、最適なサーバ学習率に肯定的な有意義で堅牢な指標を見つけるために、理論的な推論を行う。
論文 参考訳(メタデータ) (2023-01-25T03:52:45Z) - Federated Graph-based Sampling with Arbitrary Client Availability [34.95352685954059]
本稿では,FedGS(Federated Graph-based Smpling)というフレームワークを提案する。
実験結果から,FedGSが公正なクライアントサンプリング方式を実現し,任意のクライアントアベイラビリティの下でモデル性能を向上させるという利点が確認できた。
論文 参考訳(メタデータ) (2022-11-25T09:38:20Z) - Straggler-Resilient Personalized Federated Learning [55.54344312542944]
フェデレーション学習は、プライバシと通信の制限を尊重しながら、クライアントの大規模なネットワークに分散されたサンプルからのトレーニングモデルを可能にする。
これら2つのハードルを同時に処理する理論的なスピードアップを保証する新しいアルゴリズム手法を開発した。
提案手法は,すべてのクライアントのデータを用いてグローバルな共通表現を見つけ,各クライアントに対してパーソナライズされたソリューションにつながるパラメータの集合を学習するために,表現学習理論からのアイデアに依存している。
論文 参考訳(メタデータ) (2022-06-05T01:14:46Z) - Federated Learning in Non-IID Settings Aided by Differentially Private
Synthetic Data [20.757477553095637]
Federated Learning(FL)は、クライアントが機械学習モデルを協調的にトレーニングすることを可能にする、プライバシプロモーティングフレームワークである。
連合学習における大きな課題は、局所データが不均一であるときに生じる。
我々は、クライアントが変動自動エンコーダをデプロイして、遅延データ表現の微分プライベートな手段を用いて、ローカルデータセットを合成するFLアルゴリズムであるFedDPMSを提案する。
論文 参考訳(メタデータ) (2022-06-01T18:00:48Z) - Federated Noisy Client Learning [105.00756772827066]
フェデレートラーニング(FL)は、複数のローカルクライアントに依存する共有グローバルモデルを協調的に集約する。
標準FLメソッドは、集約されたモデル全体のパフォーマンスを損なううるノイズの多いクライアントの問題を無視します。
本稿では,Fed-NCL (Federated Noisy Client Learning) を提案する。
論文 参考訳(メタデータ) (2021-06-24T11:09:17Z) - Toward Understanding the Influence of Individual Clients in Federated
Learning [52.07734799278535]
フェデレーションラーニングにより、クライアントはプライベートデータを中央サーバーに送信することなく、グローバルモデルを共同でトレーニングできます。
em-Influenceという新しい概念を定義し、パラメータに対するこの影響を定量化し、このメトリクスを推定する効果的な効率的なモデルを提案しました。
論文 参考訳(メタデータ) (2020-12-20T14:34:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。