The Perfect Blend: Redefining RLHF with Mixture of Judges
- URL: http://arxiv.org/abs/2409.20370v1
- Date: Mon, 30 Sep 2024 15:06:53 GMT
- Title: The Perfect Blend: Redefining RLHF with Mixture of Judges
- Authors: Tengyu Xu, Eryk Helenowski, Karthik Abinav Sankararaman, Di Jin, Kaiyan Peng, Eric Han, Shaoliang Nie, Chen Zhu, Hejia Zhang, Wenxuan Zhou, Zhouhao Zeng, Yun He, Karishma Mandyam, Arya Talabzadeh, Madian Khabsa, Gabriel Cohen, Yuandong Tian, Hao Ma, Sinong Wang, Han Fang,
- Abstract summary: Reinforcement learning from human feedback (RLHF) has become the leading approach for fine-tuning large language models (LLM)
Applying RLHF for MTL currently requires careful tuning of the weights for reward model and data combinations.
We introduce a novel post-training paradigm which we called Constrained Generative Policy Optimization (CGPO)
- Score: 68.58426626501883
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Reinforcement learning from human feedback (RLHF) has become the leading approach for fine-tuning large language models (LLM). However, RLHF has limitations in multi-task learning (MTL) due to challenges of reward hacking and extreme multi-objective optimization (i.e., trade-off of multiple and/or sometimes conflicting objectives). Applying RLHF for MTL currently requires careful tuning of the weights for reward model and data combinations. This is often done via human intuition and does not generalize. In this work, we introduce a novel post-training paradigm which we called Constrained Generative Policy Optimization (CGPO). The core of CGPO is Mixture of Judges (MoJ) with cost-efficient constrained policy optimization with stratification, which can identify the perfect blend in RLHF in a principled manner. It shows strong empirical results with theoretical guarantees, does not require extensive hyper-parameter tuning, and is plug-and-play in common post-training pipelines. Together, this can detect and mitigate reward hacking behaviors while reaching a pareto-optimal point across an extremely large number of objectives. Our empirical evaluations demonstrate that CGPO significantly outperforms standard RLHF algorithms like PPO and DPO across various tasks including general chat, STEM questions, instruction following, and coding. Specifically, CGPO shows improvements of 7.4% in AlpacaEval-2 (general chat), 12.5% in Arena-Hard (STEM & reasoning), and consistent gains in other domains like math and coding. Notably, PPO, while commonly used, is prone to severe reward hacking in popular coding benchmarks, which CGPO successfully addresses. This breakthrough in RLHF not only tackles reward hacking and extreme multi-objective optimization challenges but also advances the state-of-the-art in aligning general-purpose LLMs for diverse applications.
Related papers
- VinePPO: Unlocking RL Potential For LLM Reasoning Through Refined Credit Assignment [66.80143024475635]
We propose VinePPO, a straightforward approach to compute unbiased Monte Carlo-based estimates.
We show that VinePPO consistently outperforms PPO and other RL-free baselines across MATH and GSM8K datasets.
arXiv Detail & Related papers (2024-10-02T15:49:30Z) - Zeroth-Order Policy Gradient for Reinforcement Learning from Human
Feedback without Reward Inference [17.76565371753346]
This paper develops two RLHF algorithms without reward inference.
The key idea is to estimate the local value function difference from human preferences and then approximate the policy gradient with a zeroth-order gradient approximator.
Our results show there exist provably efficient methods to solve general RLHF problems without reward inference.
arXiv Detail & Related papers (2024-09-25T22:20:11Z) - Policy Filtration in RLHF to Fine-Tune LLM for Code Generation [13.2216273705657]
Reinforcement learning from human feedback (RLHF) is one of the key techniques that helps large language models (LLMs) to follow instructions and provide harmless responses.
While direct policy optimization methods exist, state-of-the-art LLMs adopt RL-based methods (usually PPO) in RLHF to train the policy to generate good responses guided by a reward model learned from preference data.
We find that the reliability of the reward model varies across responses assigned with different rewards.
This motivates us to filter the samples whose rewards may be unreliable to improve signal-to-noise ratio during policy learning
arXiv Detail & Related papers (2024-09-11T02:40:38Z) - UNA: Unifying Alignments of RLHF/PPO, DPO and KTO by a Generalized Implicit Reward Function [14.7365465149829]
We propose textbfUNified textbfAlignment (UNA) which unifies RLHF/PPO, DPO and KTO.
With this novel mapping between a reward model and an optimal policy, UNA can 1.
outperform RLHF/PPO while simplify, stabilize, speed up and reduce memory burden of RL fine-tuning process.
arXiv Detail & Related papers (2024-08-27T18:04:07Z) - Joint Demonstration and Preference Learning Improves Policy Alignment with Human Feedback [58.049113055986375]
We develop a single stage approach named Alignment with Integrated Human Feedback (AIHF) to train reward models and the policy.
The proposed approach admits a suite of efficient algorithms, which can easily reduce to, and leverage, popular alignment algorithms.
We demonstrate the efficiency of the proposed solutions with extensive experiments involving alignment problems in LLMs and robotic control problems in MuJoCo.
arXiv Detail & Related papers (2024-06-11T01:20:53Z) - Scaling Laws for Reward Model Overoptimization in Direct Alignment Algorithms [50.808123629394245]
Direct Alignment Algorithms (DDAs) like Direct Preference Optimization have emerged as alternatives to the classical RLHF pipeline.
This work formulates and formalizes the reward over-optimization or hacking problem for DAAs and explores its consequences across objectives, training regimes, and model scales.
arXiv Detail & Related papers (2024-06-05T03:41:37Z) - From $r$ to $Q^*$: Your Language Model is Secretly a Q-Function [50.812404038684505]
We show that we can derive DPO in the token-level MDP as a general inverse Q-learning algorithm, which satisfies the Bellman equation.
We discuss applications of our work, including information elicitation in multi-turn dialogue, reasoning, agentic applications and end-to-end training of multi-model systems.
arXiv Detail & Related papers (2024-04-18T17:37:02Z) - SuperHF: Supervised Iterative Learning from Human Feedback [20.22920163075946]
We focus on two prevalent methods used to align large language models, Supervised Fine-Tuning (SFT) and Reinforcement Learning from Human Feedback (RLHF)
We propose a novel approach, Supervised Iterative Learning from Human Feedback (SuperHF), which seeks to leverage the strengths of both methods.
Our experimental results show SuperHF exceeds PPO-based RLHF on the training objective, easily and favorably trades off high reward with low reward hacking, improves downstream calibration, and performs the same on our GPT-4 based qualitative evaluation scheme all the while being significantly simpler to implement.
arXiv Detail & Related papers (2023-10-25T16:52:00Z) - Direct Preference Optimization: Your Language Model is Secretly a Reward Model [119.65409513119963]
We introduce a new parameterization of the reward model in RLHF that enables extraction of the corresponding optimal policy in closed form.
The resulting algorithm, which we call Direct Preference Optimization (DPO), is stable, performant, and computationally lightweight.
Our experiments show that DPO can fine-tune LMs to align with human preferences as well as or better than existing methods.
arXiv Detail & Related papers (2023-05-29T17:57:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.