Lean and Mean: Decoupled Value Policy Optimization with Global Value Guidance
- URL: http://arxiv.org/abs/2502.16944v1
- Date: Mon, 24 Feb 2025 08:11:33 GMT
- Title: Lean and Mean: Decoupled Value Policy Optimization with Global Value Guidance
- Authors: Chenghua Huang, Lu Wang, Fangkai Yang, Pu Zhao, Zhixu Li, Qingwei Lin, Dongmei Zhang, Saravan Rajmohan, Qi Zhang,
- Abstract summary: Policy-based Reinforcement Learning from Human Feedback is essential for aligning large language models with human preferences.<n>It requires joint training of an actor and critic with a pretrained, fixed reward model for guidance.<n>We propose textbfDecoupled Value Policy Optimization (DVPO), a lean framework that replaces traditional reward modeling with a pretrained emphglobal value model (GVM)
- Score: 52.65461207786633
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Proximal Policy Optimization (PPO)-based Reinforcement Learning from Human Feedback (RLHF) is essential for aligning large language models (LLMs) with human preferences. It requires joint training of an actor and critic with a pretrained, fixed reward model for guidance. This approach increases computational complexity and instability due to actor-critic interdependence. Additionally, PPO lacks access to true environment rewards in LLM tasks, limiting its adaptability. Under such conditions, pretraining a value model or a reward model becomes equivalent, as both provide fixed supervisory signals without new ground-truth feedback. To address these issues, we propose \textbf{Decoupled Value Policy Optimization (DVPO)}, a lean framework that replaces traditional reward modeling with a pretrained \emph{global value model (GVM)}. The GVM is conditioned on policy trajectories and predicts token-level return-to-go estimates. By decoupling value model from policy training (via frozen GVM-driven RL objectives), DVPO eliminates actor-critic interdependence, reducing GPU memory usage by 40\% and training time by 35\% compared to conventional RLHF. Experiments across benchmarks show DVPO outperforms efficient RLHF methods (e.g., DPO) while matching state-of-the-art PPO in performance.
Related papers
- Optimizing Safe and Aligned Language Generation: A Multi-Objective GRPO Approach [2.8626097661711394]
Reinforcement Learning from Human Feedback has achieved notable success in steering models, but is complex and can be unstable.
Recent approaches such as Direct Preference Optimization (DPO) simplify preference-based fine-tuning but may introduce bias or trade-off certain objectives.
We propose a Group Relative Policy Optimization framework with a multi-label reward regression model to achieve safe and aligned language generation.
arXiv Detail & Related papers (2025-03-26T05:50:33Z) - PILAF: Optimal Human Preference Sampling for Reward Modeling [14.336058926701432]
We propose Policy-Interpolated Learning for Aligned Feedback (PILAF), a novel response sampling strategy for preference labeling.<n>PILAF explicitly aligns preference learning with maximizing the underlying oracle reward.
arXiv Detail & Related papers (2025-02-06T18:09:00Z) - REINFORCE++: An Efficient RLHF Algorithm with Robustness to Both Prompt and Reward Models [8.587685197004097]
REINFORCE++ is a novel approach that removes the critic model while using the normalized reward of a batch as the baseline.
It exhibits robust performance across various reward models without requiring prompt set truncation.
It achieves superior generalization in both RLHF and long chain-of-thought settings compared to existing REINFORCE-based methods.
arXiv Detail & Related papers (2025-01-04T02:08:06Z) - VinePPO: Unlocking RL Potential For LLM Reasoning Through Refined Credit Assignment [66.80143024475635]
We propose VinePPO, a straightforward approach to compute unbiased Monte Carlo-based estimates.
We show that VinePPO consistently outperforms PPO and other RL-free baselines across MATH and GSM8K datasets.
arXiv Detail & Related papers (2024-10-02T15:49:30Z) - Zeroth-Order Policy Gradient for Reinforcement Learning from Human
Feedback without Reward Inference [17.76565371753346]
This paper develops two RLHF algorithms without reward inference.
The key idea is to estimate the local value function difference from human preferences and then approximate the policy gradient with a zeroth-order gradient approximator.
Our results show there exist provably efficient methods to solve general RLHF problems without reward inference.
arXiv Detail & Related papers (2024-09-25T22:20:11Z) - Value-Incentivized Preference Optimization: A Unified Approach to Online and Offline RLHF [80.32171988565999]
We introduce a unified approach to online and offline RLHF -- value-incentivized preference optimization (VPO)
VPO regularizes the maximum-likelihood estimate of the reward function with the corresponding value function.
Experiments on text summarization and dialog verify the practicality and effectiveness of VPO.
arXiv Detail & Related papers (2024-05-29T17:51:42Z) - Prior Constraints-based Reward Model Training for Aligning Large Language Models [58.33118716810208]
This paper proposes a Prior Constraints-based Reward Model (namely PCRM) training method to mitigate this problem.
PCRM incorporates prior constraints, specifically, length ratio and cosine similarity between outputs of each comparison pair, during reward model training to regulate optimization magnitude and control score margins.
Experimental results demonstrate that PCRM significantly improves alignment performance by effectively constraining reward score scaling.
arXiv Detail & Related papers (2024-04-01T07:49:11Z) - Secrets of RLHF in Large Language Models Part I: PPO [81.01936993929127]
Large language models (LLMs) have formulated a blueprint for the advancement of artificial general intelligence.
reinforcement learning with human feedback (RLHF) emerges as the pivotal technological paradigm underpinning this pursuit.
In this report, we dissect the framework of RLHF, re-evaluate the inner workings of PPO, and explore how the parts comprising PPO algorithms impact policy agent training.
arXiv Detail & Related papers (2023-07-11T01:55:24Z) - Direct Preference Optimization: Your Language Model is Secretly a Reward Model [119.65409513119963]
We introduce a new parameterization of the reward model in RLHF that enables extraction of the corresponding optimal policy in closed form.
The resulting algorithm, which we call Direct Preference Optimization (DPO), is stable, performant, and computationally lightweight.
Our experiments show that DPO can fine-tune LMs to align with human preferences as well as or better than existing methods.
arXiv Detail & Related papers (2023-05-29T17:57:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.