Open-Source Periorbital Segmentation Dataset for Ophthalmic Applications
- URL: http://arxiv.org/abs/2409.20407v2
- Date: Thu, 10 Oct 2024 21:47:24 GMT
- Title: Open-Source Periorbital Segmentation Dataset for Ophthalmic Applications
- Authors: George R. Nahass, Emma Koehler, Nicholas Tomaras, Danny Lopez, Madison Cheung, Alexander Palacios, Jefferey Peterson, Sasha Hubschman, Kelsey Green, Chad A. Purnell, Pete Setabutr, Ann Q. Tran, Darvin Yi,
- Abstract summary: Periorbital segmentation and distance prediction using deep learning allows for the objective quantification of disease state.
There are currently no reports of segmentation datasets for the purposes of training deep learning models with sub mm accuracy on the regions around the eyes.
Here, we validate this dataset through intra and intergrader reliability tests and show the utility of the data in training periorbital segmentation networks.
- Score: 30.61547468576024
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Periorbital segmentation and distance prediction using deep learning allows for the objective quantification of disease state, treatment monitoring, and remote medicine. However, there are currently no reports of segmentation datasets for the purposes of training deep learning models with sub mm accuracy on the regions around the eyes. All images (n=2842) had the iris, sclera, lid, caruncle, and brow segmented by five trained annotators. Here, we validate this dataset through intra and intergrader reliability tests and show the utility of the data in training periorbital segmentation networks. All the annotations are publicly available for free download. Having access to segmentation datasets designed specifically for oculoplastic surgery will permit more rapid development of clinically useful segmentation networks which can be leveraged for periorbital distance prediction and disease classification. In addition to the annotations, we also provide an open-source toolkit for periorbital distance prediction from segmentation masks. The weights of all models have also been open-sourced and are publicly available for use by the community.
Related papers
- Semantic Segmentation for Preoperative Planning in Transcatheter Aortic Valve Replacement [61.573750959726475]
We consider medical guidelines for preoperative planning of the transcatheter aortic valve replacement (TAVR) and identify tasks that may be supported via semantic segmentation models.<n>We first derive fine-grained TAVR-relevant pseudo-labels from coarse-grained anatomical information, in order to train segmentation models and quantify how well they are able to find these structures in the scans.
arXiv Detail & Related papers (2025-07-22T13:24:45Z) - PathSegDiff: Pathology Segmentation using Diffusion model representations [63.20694440934692]
We propose PathSegDiff, a novel approach for histopathology image segmentation that leverages Latent Diffusion Models (LDMs) as pre-trained featured extractors.
Our method utilizes a pathology-specific LDM, guided by a self-supervised encoder, to extract rich semantic information from H&E stained histopathology images.
Our experiments demonstrate significant improvements over traditional methods on the BCSS and GlaS datasets.
arXiv Detail & Related papers (2025-04-09T14:58:21Z) - State-of-the-Art Periorbital Distance Prediction and Disease Classification Using Periorbital Features [0.19638749905454383]
We set out to developed three deep-learning methods for segmentation and periorbital distance prediction.
We also evaluate the utility of periorbital distances for disease classification.
We show that robust segmentation can be achieved on diseased eyes using models trained on open-source, healthy eyes.
arXiv Detail & Related papers (2024-09-27T14:14:16Z) - SatSynth: Augmenting Image-Mask Pairs through Diffusion Models for Aerial Semantic Segmentation [69.42764583465508]
We explore the potential of generative image diffusion to address the scarcity of annotated data in earth observation tasks.
To the best of our knowledge, we are the first to generate both images and corresponding masks for satellite segmentation.
arXiv Detail & Related papers (2024-03-25T10:30:22Z) - Learnable Weight Initialization for Volumetric Medical Image Segmentation [66.3030435676252]
We propose a learnable weight-based hybrid medical image segmentation approach.
Our approach is easy to integrate into any hybrid model and requires no external training data.
Experiments on multi-organ and lung cancer segmentation tasks demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-06-15T17:55:05Z) - Clinically Acceptable Segmentation of Organs at Risk in Cervical Cancer
Radiation Treatment from Clinically Available Annotations [0.0]
We present an approach to learn a deep learning model for the automatic segmentation of Organs at Risk (OARs) in cervical cancer radiation treatment.
We employ simples for automatic data cleaning to minimize data inhomogeneity, label noise, and missing annotations.
We develop a semi-supervised learning approach utilizing a teacher-student setup, annotation imputation, and uncertainty-guided training to learn in presence of missing annotations.
arXiv Detail & Related papers (2023-02-21T13:24:40Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
We propose a new semi-supervised adversarial method called Patch Confidence Adrial Training (PCA) for medical image segmentation.
PCA learns the pixel structure and context information in each patch to get enough gradient feedback, which aids the discriminator in convergent to an optimal state.
Our method outperforms the state-of-the-art semi-supervised methods, which demonstrates its effectiveness for medical image segmentation.
arXiv Detail & Related papers (2022-07-24T07:45:47Z) - Temporally Constrained Neural Networks (TCNN): A framework for
semi-supervised video semantic segmentation [5.0754434714665715]
We present Temporally Constrained Neural Networks (TCNN), a semi-supervised framework used for video semantic segmentation of surgical videos.
In this work, we show that autoencoder networks can be used to efficiently provide both spatial and temporal supervisory signals.
We demonstrate that lower-dimensional representations of predicted masks can be leveraged to provide a consistent improvement on both sparsely labeled datasets.
arXiv Detail & Related papers (2021-12-27T18:06:12Z) - Domain Generalization for Medical Imaging Classification with
Linear-Dependency Regularization [59.5104563755095]
We introduce a simple but effective approach to improve the generalization capability of deep neural networks in the field of medical imaging classification.
Motivated by the observation that the domain variability of the medical images is to some extent compact, we propose to learn a representative feature space through variational encoding.
arXiv Detail & Related papers (2020-09-27T12:30:30Z) - Semi-Automatic Data Annotation guided by Feature Space Projection [117.9296191012968]
We present a semi-automatic data annotation approach based on suitable feature space projection and semi-supervised label estimation.
We validate our method on the popular MNIST dataset and on images of human intestinal parasites with and without fecal impurities.
Our results demonstrate the added-value of visual analytics tools that combine complementary abilities of humans and machines for more effective machine learning.
arXiv Detail & Related papers (2020-07-27T17:03:50Z) - Towards Unsupervised Learning for Instrument Segmentation in Robotic
Surgery with Cycle-Consistent Adversarial Networks [54.00217496410142]
We propose an unpaired image-to-image translation where the goal is to learn the mapping between an input endoscopic image and a corresponding annotation.
Our approach allows to train image segmentation models without the need to acquire expensive annotations.
We test our proposed method on Endovis 2017 challenge dataset and show that it is competitive with supervised segmentation methods.
arXiv Detail & Related papers (2020-07-09T01:39:39Z) - Progressive Adversarial Semantic Segmentation [11.323677925193438]
Deep convolutional neural networks can perform exceedingly well given full supervision.
The success of such fully-supervised models for various image analysis tasks is limited to the availability of massive amounts of labeled data.
We propose a novel end-to-end medical image segmentation model, namely Progressive Adrial Semantic (PASS)
arXiv Detail & Related papers (2020-05-08T22:48:00Z) - IntrA: 3D Intracranial Aneurysm Dataset for Deep Learning [18.163031102785904]
We introduce an open-access 3D intracranial aneurysm dataset, IntrA, that makes the application of points-based and mesh-based classification and segmentation models available.
Our dataset can be used to diagnose intracranial aneurysms and to extract the neck for a clipping operation in medicine.
arXiv Detail & Related papers (2020-03-02T05:21:53Z) - Weak Supervision in Convolutional Neural Network for Semantic
Segmentation of Diffuse Lung Diseases Using Partially Annotated Dataset [2.239917051803692]
We develop semantic segmentation model for 5 kinds of lung diseases.
DLDs considered in this work are consolidation, ground glass opacity, honeycombing, emphysema, and normal.
We propose a new weak supervision technique that effectively utilizes partially annotated dataset.
arXiv Detail & Related papers (2020-02-27T06:17:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.