Decoding the Echoes of Vision from fMRI: Memory Disentangling for Past Semantic Information
- URL: http://arxiv.org/abs/2409.20428v1
- Date: Mon, 30 Sep 2024 15:51:06 GMT
- Title: Decoding the Echoes of Vision from fMRI: Memory Disentangling for Past Semantic Information
- Authors: Runze Xia, Congchi Yin, Piji Li,
- Abstract summary: This study investigates the capacity of working memory to retain past information under continuous visual stimuli.
We propose a new task Memory Disentangling, which aims to extract and decode past information from fMRI signals.
- Score: 26.837527605133
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The human visual system is capable of processing continuous streams of visual information, but how the brain encodes and retrieves recent visual memories during continuous visual processing remains unexplored. This study investigates the capacity of working memory to retain past information under continuous visual stimuli. And then we propose a new task Memory Disentangling, which aims to extract and decode past information from fMRI signals. To address the issue of interference from past memory information, we design a disentangled contrastive learning method inspired by the phenomenon of proactive interference. This method separates the information between adjacent fMRI signals into current and past components and decodes them into image descriptions. Experimental results demonstrate that this method effectively disentangles the information within fMRI signals. This research could advance brain-computer interfaces and mitigate the problem of low temporal resolution in fMRI.
Related papers
- Perception Activator: An intuitive and portable framework for brain cognitive exploration [19.851643249367108]
We develop an experimental framework that uses fMRI representations as intervention conditions.<n>We compare both downstream performance and intermediate feature changes on object detection and instance segmentation tasks with and without fMRI information.<n>Our results prove that fMRI contains rich multi-object semantic cues and coarse spatial localization information-elements that current models have yet to fully exploit or integrate.
arXiv Detail & Related papers (2025-07-03T04:46:48Z) - Voxel-Level Brain States Prediction Using Swin Transformer [65.9194533414066]
We propose a novel architecture which employs a 4D Shifted Window (Swin) Transformer as encoder to efficiently learn-temporal information and a convolutional decoder to enable brain state prediction at the same spatial and temporal resolution as the input fMRI data.<n>Our model has shown high accuracy when predicting 7.2s resting-state brain activities based on the prior 23.04s fMRI time series.<n>This shows promising evidence that thetemporal organization of the human brain can be learned by a Swin Transformer model, at high resolution, which provides a potential for reducing fMRI scan time and the development of brain-computer interfaces
arXiv Detail & Related papers (2025-06-13T04:14:38Z) - ContextMRI: Enhancing Compressed Sensing MRI through Metadata Conditioning [51.26601171361753]
We propose ContextMRI, a text-conditioned diffusion model for MRI that integrates granular metadata into the reconstruction process.
We show that increasing the fidelity of metadata, ranging from slice location and contrast to patient age, sex, and pathology, systematically boosts reconstruction performance.
arXiv Detail & Related papers (2025-01-08T05:15:43Z) - MindFormer: Semantic Alignment of Multi-Subject fMRI for Brain Decoding [50.55024115943266]
We introduce a novel semantic alignment method of multi-subject fMRI signals using so-called MindFormer.
This model is specifically designed to generate fMRI-conditioned feature vectors that can be used for conditioning Stable Diffusion model for fMRI- to-image generation or large language model (LLM) for fMRI-to-text generation.
Our experimental results demonstrate that MindFormer generates semantically consistent images and text across different subjects.
arXiv Detail & Related papers (2024-05-28T00:36:25Z) - Brain3D: Generating 3D Objects from fMRI [76.41771117405973]
We design a novel 3D object representation learning method, Brain3D, that takes as input the fMRI data of a subject.
We show that our model captures the distinct functionalities of each region of human vision system.
Preliminary evaluations indicate that Brain3D can successfully identify the disordered brain regions in simulated scenarios.
arXiv Detail & Related papers (2024-05-24T06:06:11Z) - NeuroCine: Decoding Vivid Video Sequences from Human Brain Activties [23.893490180665996]
We introduce NeuroCine, a novel dual-phase framework to targeting the inherent challenges of decoding fMRI data.
tested on a publicly available fMRI dataset, our method shows promising results.
Our attention analysis suggests that the model aligns with existing brain structures and functions, indicating its biological plausibility and interpretability.
arXiv Detail & Related papers (2024-02-02T17:34:25Z) - Brainformer: Mimic Human Visual Brain Functions to Machine Vision Models via fMRI [12.203617776046169]
We introduce a novel framework named Brainformer to analyze fMRI patterns in the human perception system.
This work introduces a prospective approach to transferring knowledge from human perception to neural networks.
arXiv Detail & Related papers (2023-11-30T22:39:23Z) - fMRI-PTE: A Large-scale fMRI Pretrained Transformer Encoder for
Multi-Subject Brain Activity Decoding [54.17776744076334]
We propose fMRI-PTE, an innovative auto-encoder approach for fMRI pre-training.
Our approach involves transforming fMRI signals into unified 2D representations, ensuring consistency in dimensions and preserving brain activity patterns.
Our contributions encompass introducing fMRI-PTE, innovative data transformation, efficient training, a novel learning strategy, and the universal applicability of our approach.
arXiv Detail & Related papers (2023-11-01T07:24:22Z) - Seeing through the Brain: Image Reconstruction of Visual Perception from
Human Brain Signals [27.92796103924193]
We propose a comprehensive pipeline, named NeuroImagen, for reconstructing visual stimuli images from EEG signals.
We incorporate a novel multi-level perceptual information decoding to draw multi-grained outputs from the given EEG data.
arXiv Detail & Related papers (2023-07-27T12:54:16Z) - Contrast, Attend and Diffuse to Decode High-Resolution Images from Brain
Activities [31.448924808940284]
We introduce a two-phase fMRI representation learning framework.
The first phase pre-trains an fMRI feature learner with a proposed Double-contrastive Mask Auto-encoder to learn denoised representations.
The second phase tunes the feature learner to attend to neural activation patterns most informative for visual reconstruction with guidance from an image auto-encoder.
arXiv Detail & Related papers (2023-05-26T19:16:23Z) - Controllable Mind Visual Diffusion Model [58.83896307930354]
Brain signal visualization has emerged as an active research area, serving as a critical interface between the human visual system and computer vision models.
We propose a novel approach, referred to as Controllable Mind Visual Model Diffusion (CMVDM)
CMVDM extracts semantic and silhouette information from fMRI data using attribute alignment and assistant networks.
We then leverage a control model to fully exploit the extracted information for image synthesis, resulting in generated images that closely resemble the visual stimuli in terms of semantics and silhouette.
arXiv Detail & Related papers (2023-05-17T11:36:40Z) - Joint fMRI Decoding and Encoding with Latent Embedding Alignment [77.66508125297754]
We introduce a unified framework that addresses both fMRI decoding and encoding.
Our model concurrently recovers visual stimuli from fMRI signals and predicts brain activity from images within a unified framework.
arXiv Detail & Related papers (2023-03-26T14:14:58Z) - BrainCLIP: Bridging Brain and Visual-Linguistic Representation Via CLIP
for Generic Natural Visual Stimulus Decoding [51.911473457195555]
BrainCLIP is a task-agnostic fMRI-based brain decoding model.
It bridges the modality gap between brain activity, image, and text.
BrainCLIP can reconstruct visual stimuli with high semantic fidelity.
arXiv Detail & Related papers (2023-02-25T03:28:54Z) - Mind Reader: Reconstructing complex images from brain activities [16.78619734818198]
We focus on reconstructing the complex image stimuli from fMRI (functional magnetic resonance imaging) signals.
Unlike previous works that reconstruct images with single objects or simple shapes, our work aims to reconstruct image stimuli rich in semantics.
We find that incorporating an additional text modality is beneficial for the reconstruction problem compared to directly translating brain signals to images.
arXiv Detail & Related papers (2022-09-30T06:32:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.