論文の概要: Randomness from Radiation: Evaluation and Analysis of Radiation-Based Random Number Generators
- arxiv url: http://arxiv.org/abs/2409.20492v1
- Date: Mon, 30 Sep 2024 16:54:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-02 05:36:48.595347
- Title: Randomness from Radiation: Evaluation and Analysis of Radiation-Based Random Number Generators
- Title(参考訳): 放射線からのランダム性:放射線によるランダム数発生器の評価と解析
- Authors: Roohi Zafar, Muhammad Kamran, Tahir Malik, Kashish Karera, Humayon Tariq, Ghulam Mustafa, Muhammad Mubashir Khan,
- Abstract要約: 本稿では,放射性崩壊に基づく量子乱数の生成と解析を行う。
記録されたデータはエントロピーと周波数測定によって自己検査された。
この研究は、放射性源の性質、カウンタとソースの間の距離、カウントの記録時間の影響を提供する。
- 参考スコア(独自算出の注目度): 0.4711628883579317
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Random numbers are central to various applications such as secure communications, quantum key distribution theory (QKD), statistics, and other tasks. One of today's most popular generators is quantum random numbers (QRNGs). The inherent randomness and true unpredictability in quantum mechanics allowed us to construct QRNGs that are more accurate and useful than traditional random number generators. Based on different quantum mechanical principles, several QRNGs have already been designed. The primary focus of this paper is the generation and analysis of quantum random numbers based on radioactive decay. In the experimental set, two beta-active radioactive sources, cobalt-60 (Co60) and Strontium-90 (Sr 90), and an ST-360 counter with a Geiger-Muller (GM) tube are used to record the counts. The recorded data was then self-tested by entropy and frequency measurement. Moreover, popular testing technique, the National Institute of Science and Technology (NIST) randomness testing is used, to ensure that the guaranteed randomness meets security standards. The research provides the impact of the nature of the radioactive source, the distance between the counter and sources, and the recording time of the counts on generating quantum random numbers of radioactive QRNGs.
- Abstract(参考訳): ランダム数は、セキュア通信、量子鍵分布理論(QKD)、統計、その他のタスクなどの様々な応用の中心である。
今日の最も人気のあるジェネレータの1つは、量子乱数(QRNG)である。
量子力学における固有乱数性と真の予測不可能により、従来の乱数生成器よりも正確で有用なQRNGを構築することができた。
異なる量子力学原理に基づいて、いくつかのQRNGがすでに設計されている。
本論文の主な焦点は、放射性崩壊に基づく量子乱数の生成と解析である。
実験セットでは、コバルト60(Co60)とストロンチウム90(Sr90)の2つのベータ活性放射性物質と、ガイガー・ミュラー(GM)管を備えたST-360カウンタを用いて計数を記録する。
記録されたデータはエントロピーと周波数測定によって自己検査された。
さらに、保証されたランダム性がセキュリティ基準を満たすことを保証するため、一般的なテスト技術であるNational Institute of Science and Technology (NIST)ランダムネステストが使用されている。
この研究は、放射性源の性質、カウンタとソースの間の距離、および放射性QRNGの量子乱数生成におけるカウントの記録時間の影響を提供する。
関連論文リスト
- Quantum Random Number Generation with Partial Source Assumptions [26.983886835892363]
量子乱数生成器は、真の乱数を生成するために量子力学の力を利用する。
しかし、現実世界のデバイスは、しばしば、生成されたランダム性の完全性とプライバシーを損なう欠陥に悩まされる。
本稿では、新しい量子乱数生成器を提案し、それを実験的に実証する。
論文 参考訳(メタデータ) (2023-12-06T08:08:11Z) - Partial Loopholes Free Device Independent Quantum Random Number
Generator Using IBM's Quantum Computers [0.24578723416255752]
本研究では、CHSHの不等式違反を利用して、デバイス独立な量子乱数を生成する方法を提案する。
CHSHテストに対する各量子コンピュータの性能をプロットし、評価した。
本研究は,量子コンピュータを用いた自己テストおよび半自己テストランダム数生成器の開発に向けた新たな方向性を提供する。
論文 参考訳(メタデータ) (2023-09-11T08:34:45Z) - Quantum Random Number Generator Based on LED [0.0]
量子乱数生成器(QRNG)は、量子力学の固有確率性に基づく乱数を生成する。
本稿では,LEDにおける自然発光と吸収のゆらぎに基づいて乱数を生成する組込みQRNGの設計と製造を行う。
この装置はNISTテストに合格し、生成速度は1Mbit/s、出力データのランダム性が不変である。
論文 参考訳(メタデータ) (2023-05-25T14:31:32Z) - A privacy-preserving publicly verifiable quantum random number generator [48.7576911714538]
本稿では,ランダムビットのプライバシを損なうことなく,第三者が統計的テストを行うことのできる絡み合いベースのプロトコルの実装について報告する。
コンピューティングパワーの制限は、エンドユーザーによるそのような検証の能力を制限する可能性がある。
論文 参考訳(メタデータ) (2023-05-18T12:13:48Z) - Quantum Conformal Prediction for Reliable Uncertainty Quantification in
Quantum Machine Learning [47.991114317813555]
量子モデルは暗黙の確率予測器を実装し、測定ショットを通じて各入力に対して複数のランダムな決定を生成する。
本稿では、そのようなランダム性を利用して、モデルの不確実性を確実に捉えることができる分類と回帰の両方の予測セットを定義することを提案する。
論文 参考訳(メタデータ) (2023-04-06T22:05:21Z) - Testing randomness of series generated in Bell's experiment [62.997667081978825]
おもちゃの光ファイバーをベースとしたセットアップを用いてバイナリシリーズを生成し、そのランダム度をVilleの原理に従って評価する。
標準統計指標の電池、ハースト、コルモゴロフ複雑性、最小エントロピー、埋め込みのTakensarity次元、および拡張ディッキー・フラーとクワイアトコフスキー・フィリップス・シュミット・シン(英語版)でテストされ、ステーション指数をチェックする。
Toeplitz 抽出器を不規則級数に適用することにより得られる系列のランダム性のレベルは、非還元原料のレベルと区別できない。
論文 参考訳(メタデータ) (2022-08-31T17:39:29Z) - Self-testing randomness from a nuclear spin system [0.9774183498779745]
本稿では,初めて核スピン系に基づく概念実証ランダム数生成器を提案する。
実験データにおけるランダム性のエントロピーは、2次元の証人認証プロトコルによって定量化される。
論文 参考訳(メタデータ) (2022-03-09T08:43:45Z) - Single photon randomness originating from the symmetry of dipole
emission and the unpredictability of spontaneous emission [55.41644538483948]
量子乱数生成は、量子暗号と基本量子光学の鍵となる要素である。
自然発生過程に基づく量子乱数生成を実験的に実証する。
このスキームはコヒーレントな単一光子によってランダム数生成に拡張することができ、室温での固体ベースの量子通信にも応用できる。
論文 参考訳(メタデータ) (2021-02-18T14:07:20Z) - Unpredictable and Uniform RNG based on time of arrival using InGaAs
Detectors [0.14337588659482517]
通信波長の弱いコヒーレント音源から高品質な量子乱数を生成した。
エントロピーは、予め定義された時間間隔内での量子状態の到来時刻に基づいている。
InGaAs単光子検出器による光子の検出と5psの高精度測定により、到着時間あたり16ビットのランダムな光子を生成することができる。
論文 参考訳(メタデータ) (2020-10-24T13:31:00Z) - Quantum Random Number Generation using a Solid-State Single-Photon
Source [89.24951036534168]
量子乱数生成(QRNG)は、量子力学現象の固有乱数性を利用する。
六方晶窒化ホウ素の量子エミッタによるQRNGの実証を行った。
本研究は,オンチップ決定性乱数生成器の製作への新たな道を開くものである。
論文 参考訳(メタデータ) (2020-01-28T22:47:43Z) - Using Randomness to decide among Locality, Realism and Ergodicity [91.3755431537592]
発見するために、または少なくとも指示を得るために実験が提案され、どれが偽であるかが示される。
このような実験の結果は、量子力学の基礎だけでなく、重要なものとなるだろう。
論文 参考訳(メタデータ) (2020-01-06T19:26:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。