Propose, Assess, Search: Harnessing LLMs for Goal-Oriented Planning in Instructional Videos
- URL: http://arxiv.org/abs/2409.20557v1
- Date: Mon, 30 Sep 2024 17:57:28 GMT
- Title: Propose, Assess, Search: Harnessing LLMs for Goal-Oriented Planning in Instructional Videos
- Authors: Md Mohaiminul Islam, Tushar Nagarajan, Huiyu Wang, Fu-Jen Chu, Kris Kitani, Gedas Bertasius, Xitong Yang,
- Abstract summary: VidAssist is an integrated framework designed for zero/few-shot goal-oriented planning in instructional videos.
It employs a breadth-first search algorithm for optimal plan generation.
Experiments demonstrate that VidAssist offers a unified framework for different goal-oriented planning setups.
- Score: 48.15438373870542
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Goal-oriented planning, or anticipating a series of actions that transition an agent from its current state to a predefined objective, is crucial for developing intelligent assistants aiding users in daily procedural tasks. The problem presents significant challenges due to the need for comprehensive knowledge of temporal and hierarchical task structures, as well as strong capabilities in reasoning and planning. To achieve this, prior work typically relies on extensive training on the target dataset, which often results in significant dataset bias and a lack of generalization to unseen tasks. In this work, we introduce VidAssist, an integrated framework designed for zero/few-shot goal-oriented planning in instructional videos. VidAssist leverages large language models (LLMs) as both the knowledge base and the assessment tool for generating and evaluating action plans, thus overcoming the challenges of acquiring procedural knowledge from small-scale, low-diversity datasets. Moreover, VidAssist employs a breadth-first search algorithm for optimal plan generation, in which a composite of value functions designed for goal-oriented planning is utilized to assess the predicted actions at each step. Extensive experiments demonstrate that VidAssist offers a unified framework for different goal-oriented planning setups, e.g., visual planning for assistance (VPA) and procedural planning (PP), and achieves remarkable performance in zero-shot and few-shot setups. Specifically, our few-shot model outperforms the prior fully supervised state-of-the-art method by +7.7% in VPA and +4.81% PP task on the COIN dataset while predicting 4 future actions. Code, and models are publicly available at https://sites.google.com/view/vidassist.
Related papers
- Learning to Plan for Retrieval-Augmented Large Language Models from Knowledge Graphs [59.76268575344119]
We introduce a novel framework for enhancing large language models' (LLMs) planning capabilities by using planning data derived from knowledge graphs (KGs)
LLMs fine-tuned with KG data have improved planning capabilities, better equipping them to handle complex QA tasks that involve retrieval.
arXiv Detail & Related papers (2024-06-20T13:07:38Z) - Socratic Planner: Inquiry-Based Zero-Shot Planning for Embodied Instruction Following [17.608330952846075]
Embodied Instruction Following (EIF) is the task of executing natural language instructions by navigating and interacting with objects in 3D environments.
One of the primary challenges in EIF is compositional task planning, which is often addressed with supervised or in-context learning with labeled data.
We introduce the Socratic Planner, the first zero-shot planning method that infers without the need for any training data.
arXiv Detail & Related papers (2024-04-21T08:10:20Z) - Anticipate & Collab: Data-driven Task Anticipation and Knowledge-driven Planning for Human-robot Collaboration [13.631341660350028]
An agent assisting humans in daily living activities can collaborate more effectively by anticipating upcoming tasks.
Data-driven methods represent the state of the art in task anticipation, planning, and related problems, but these methods are resource-hungry and opaque.
This paper describes DaTAPlan, our framework that significantly extends our prior work toward human-robot collaboration.
arXiv Detail & Related papers (2024-04-04T16:52:48Z) - PARADISE: Evaluating Implicit Planning Skills of Language Models with Procedural Warnings and Tips Dataset [0.0]
We present PARADISE, an abductive reasoning task using Q&A format on practical procedural text sourced from wikiHow.
It involves warning and tip inference tasks directly associated with goals, excluding intermediary steps, with the aim of testing the ability of the models to infer implicit knowledge of the plan solely from the given goal.
Our experiments, utilizing fine-tuned language models and zero-shot prompting, reveal the effectiveness of task-specific small models over large language models in most scenarios.
arXiv Detail & Related papers (2024-03-05T18:01:59Z) - AutoGPT+P: Affordance-based Task Planning with Large Language Models [6.848986296339031]
AutoGPT+P is a system that combines an affordance-based scene representation with a planning system.
Our approach achieves a success rate of 98%, surpassing the current 81% success rate of the current state-of-the-art LLM-based planning method SayCan.
arXiv Detail & Related papers (2024-02-16T16:00:50Z) - Learning adaptive planning representations with natural language
guidance [90.24449752926866]
This paper describes Ada, a framework for automatically constructing task-specific planning representations.
Ada interactively learns a library of planner-compatible high-level action abstractions and low-level controllers adapted to a particular domain of planning tasks.
arXiv Detail & Related papers (2023-12-13T23:35:31Z) - Embodied Task Planning with Large Language Models [86.63533340293361]
We propose a TAsk Planing Agent (TaPA) in embodied tasks for grounded planning with physical scene constraint.
During inference, we discover the objects in the scene by extending open-vocabulary object detectors to multi-view RGB images collected in different achievable locations.
Experimental results show that the generated plan from our TaPA framework can achieve higher success rate than LLaVA and GPT-3.5 by a sizable margin.
arXiv Detail & Related papers (2023-07-04T17:58:25Z) - EmbodiedGPT: Vision-Language Pre-Training via Embodied Chain of Thought [95.37585041654535]
Embodied AI is capable of planning and executing action sequences for robots to accomplish long-horizon tasks in physical environments.
In this work, we introduce EmbodiedGPT, an end-to-end multi-modal foundation model for embodied AI.
Experiments show the effectiveness of EmbodiedGPT on embodied tasks, including embodied planning, embodied control, visual captioning, and visual question answering.
arXiv Detail & Related papers (2023-05-24T11:04:30Z) - Pretrained Language Models as Visual Planners for Human Assistance [12.8775186900555]
Visual Planning for Assistance (VPA) is a tool for guiding users to achieve complex multi-step goals.
We decompose VPA into video action segmentation and forecasting.
This novel approach, which we call Visual Language Model based Planner (VLaMP), outperforms baselines across a suite of metrics.
arXiv Detail & Related papers (2023-04-17T18:07:36Z) - Long-Horizon Visual Planning with Goal-Conditioned Hierarchical
Predictors [124.30562402952319]
The ability to predict and plan into the future is fundamental for agents acting in the world.
Current learning approaches for visual prediction and planning fail on long-horizon tasks.
We propose a framework for visual prediction and planning that is able to overcome both of these limitations.
arXiv Detail & Related papers (2020-06-23T17:58:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.