Machine Learning to Detect Anxiety Disorders from Error-Related Negativity and EEG Signals
- URL: http://arxiv.org/abs/2410.00028v1
- Date: Mon, 16 Sep 2024 14:55:47 GMT
- Title: Machine Learning to Detect Anxiety Disorders from Error-Related Negativity and EEG Signals
- Authors: Ramya Chandrasekar, Md Rakibul Hasan, Shreya Ghosh, Tom Gedeon, Md Zakir Hossain,
- Abstract summary: This paper systematically reviews 54 research papers on using EEG and ERN markers for anxiety detection.
Our analysis highlights the wide usage of traditional machine learning, such as support vector machines and random forests.
Our analysis reveals that the development of a robust and generic anxiety prediction method still needs to address real-world challenges.
- Score: 6.568471315961233
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Anxiety is a common mental health condition characterised by excessive worry, fear and apprehension about everyday situations. Even with significant progress over the past few years, predicting anxiety from electroencephalographic (EEG) signals, specifically using error-related negativity (ERN), still remains challenging. Following the PRISMA protocol, this paper systematically reviews 54 research papers on using EEG and ERN markers for anxiety detection published in the last 10 years (2013 -- 2023). Our analysis highlights the wide usage of traditional machine learning, such as support vector machines and random forests, as well as deep learning models, such as convolutional neural networks and recurrent neural networks across different data types. Our analysis reveals that the development of a robust and generic anxiety prediction method still needs to address real-world challenges, such as task-specific setup, feature selection and computational modelling. We conclude this review by offering potential future direction for non-invasive, objective anxiety diagnostics, deployed across diverse populations and anxiety sub-types.
Related papers
- Benchmarking Reliability of Deep Learning Models for Pathological Gait Classification [2.1548132286330453]
Researchers have recently sought to leverage advances in machine learning algorithms to detect symptoms of altered gait.
This paper analyzes existing approaches to identify gaps inhibiting translation.
We propose our strong baseline called Asynchronous Multi-Stream Graph Convolutional Network (AMS-GCN) that can reliably differentiate multiple categories of pathological gaits.
arXiv Detail & Related papers (2024-09-20T16:47:45Z) - A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
neurodegenerative diseases (NDs) traditionally require extensive healthcare resources and human effort for medical diagnosis and monitoring.
As a crucial disease-related motor symptom, human gait can be exploited to characterize different NDs.
The current advances in artificial intelligence (AI) models enable automatic gait analysis for NDs identification and classification.
arXiv Detail & Related papers (2024-05-21T06:44:40Z) - Investigating the Generalizability of Physiological Characteristics of Anxiety [3.4036712573981607]
We evaluate the generalizability of physiological features that have been shown to be correlated with anxiety and stress to high-arousal emotions.
This work is the first cross-corpus evaluation across stress and arousal from ECG and EDA signals, contributing new findings about the generalizability of stress detection.
arXiv Detail & Related papers (2024-01-23T16:49:54Z) - Personalized State Anxiety Detection: An Empirical Study with Linguistic
Biomarkers and A Machine Learning Pipeline [7.512067061195175]
Individuals high in social anxiety symptoms often exhibit elevated state anxiety in social situations.
Research has shown it is possible to detect state anxiety by leveraging digital biomarkers and machine learning techniques.
arXiv Detail & Related papers (2023-04-19T19:06:42Z) - Safe AI for health and beyond -- Monitoring to transform a health
service [51.8524501805308]
We will assess the infrastructure required to monitor the outputs of a machine learning algorithm.
We will present two scenarios with examples of monitoring and updates of models.
arXiv Detail & Related papers (2023-03-02T17:27:45Z) - Bias Reducing Multitask Learning on Mental Health Prediction [18.32551434711739]
There has been an increase in research in developing machine learning models for mental health detection or prediction.
In this work, we aim to perform a fairness analysis and implement a multi-task learning based bias mitigation method on anxiety prediction models.
Our analysis showed that our anxiety prediction base model introduced some bias with regards to age, income, ethnicity, and whether a participant is born in the U.S. or not.
arXiv Detail & Related papers (2022-08-07T02:28:32Z) - Machine Learning Based Anxiety Detection in Older Adults using Wristband
Sensors and Context Feature [1.52292571922932]
The proposed method for anxiety detection combines features from a single physiological signal with an experimental context-based feature.
This work demonstrates the practicality of the proposed anxiety detection method in facilitating long-term monitoring of anxiety in older adults using low-cost consumer devices.
arXiv Detail & Related papers (2021-06-06T03:17:29Z) - Neuro-symbolic Neurodegenerative Disease Modeling as Probabilistic
Programmed Deep Kernels [93.58854458951431]
We present a probabilistic programmed deep kernel learning approach to personalized, predictive modeling of neurodegenerative diseases.
Our analysis considers a spectrum of neural and symbolic machine learning approaches.
We run evaluations on the problem of Alzheimer's disease prediction, yielding results that surpass deep learning.
arXiv Detail & Related papers (2020-09-16T15:16:03Z) - Anxiety Detection Leveraging Mobile Passive Sensing [53.11661460916551]
Anxiety disorders are the most common class of psychiatric problems affecting both children and adults.
Leveraging passive and unobtrusive data collection from smartphones could be a viable alternative to classical methods.
eWellness is an experimental mobile application designed to track a full-suite of sensor and user-log data off an individual's device in a continuous and passive manner.
arXiv Detail & Related papers (2020-08-09T20:22:52Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
Parkinson's Disease (PD) is a slowly evolving neuro-logical disease that affects about 1% of the population above 60 years old.
PD symptoms include tremor, rigidity and braykinesia.
We present a method for automatically identifying tremorous episodes related to PD, based on IMU signals captured via a smartphone device.
arXiv Detail & Related papers (2020-05-06T09:02:30Z) - Adversarial vs behavioural-based defensive AI with joint, continual and
active learning: automated evaluation of robustness to deception, poisoning
and concept drift [62.997667081978825]
Recent advancements in Artificial Intelligence (AI) have brought new capabilities to behavioural analysis (UEBA) for cyber-security.
In this paper, we present a solution to effectively mitigate this attack by improving the detection process and efficiently leveraging human expertise.
arXiv Detail & Related papers (2020-01-13T13:54:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.