論文の概要: Survey of Security and Data Attacks on Machine Unlearning In Financial and E-Commerce
- arxiv url: http://arxiv.org/abs/2410.00055v1
- Date: Sun, 29 Sep 2024 00:30:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-05 15:09:43.639939
- Title: Survey of Security and Data Attacks on Machine Unlearning In Financial and E-Commerce
- Title(参考訳): 金融・電子商取引における機械学習のセキュリティとデータ攻撃に関する調査
- Authors: Carl E. J. Brodzinski,
- Abstract要約: 本稿では、金融・電子商取引アプリケーションに焦点をあて、機械学習におけるセキュリティとデータアタックの状況について調査する。
これらのリスクを軽減するため、差分プライバシー、堅牢な暗号保証、ZKP(Zero-Knowledge Proofs)など、さまざまな防衛戦略が検討されている。
この調査は、セキュアマシンアンラーニングにおける継続的な研究とイノベーションの必要性と、進化する攻撃ベクトルに対する強力な防御を開発することの重要性を強調している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper surveys the landscape of security and data attacks on machine unlearning, with a focus on financial and e-commerce applications. We discuss key privacy threats such as Membership Inference Attacks and Data Reconstruction Attacks, where adversaries attempt to infer or reconstruct data that should have been removed. In addition, we explore security attacks including Machine Unlearning Data Poisoning, Unlearning Request Attacks, and Machine Unlearning Jailbreak Attacks, which target the underlying mechanisms of unlearning to manipulate or corrupt the model. To mitigate these risks, various defense strategies are examined, including differential privacy, robust cryptographic guarantees, and Zero-Knowledge Proofs (ZKPs), offering verifiable and tamper-proof unlearning mechanisms. These approaches are essential for safeguarding data integrity and privacy in high-stakes financial and e-commerce contexts, where compromised models can lead to fraud, data leaks, and reputational damage. This survey highlights the need for continued research and innovation in secure machine unlearning, as well as the importance of developing strong defenses against evolving attack vectors.
- Abstract(参考訳): 本稿では、金融・電子商取引アプリケーションを中心に、機械学習におけるセキュリティとデータアタックの状況について調査する。
我々は、メンバーシップ推論攻撃やデータ再構成攻撃などの重要なプライバシー上の脅威について論じ、敵は削除すべきデータを推測または再構成しようとする。
さらに、モデルを操作したり破損させたりするためのアンラーニングの基本的なメカニズムをターゲットにした、Machine Unlearning Data Poisoning、Unlearning Request Attacks、Machine Unlearning Jailbreak Attacksなどのセキュリティ攻撃についても検討する。
これらのリスクを軽減するために、差分プライバシー、堅牢な暗号保証、ZKP(Zero-Knowledge Proofs)など、さまざまな防御戦略が検討されている。
これらのアプローチは、不正なモデルが詐欺、データ漏洩、評判の被害につながるような、高額な金融および電子商取引の文脈におけるデータの整合性とプライバシの保護に不可欠である。
この調査は、セキュアマシンアンラーニングにおける継続的な研究とイノベーションの必要性と、進化する攻撃ベクトルに対する強力な防御を開発することの重要性を強調している。
関連論文リスト
- New Emerged Security and Privacy of Pre-trained Model: a Survey and Outlook [54.24701201956833]
セキュリティとプライバシーの問題は、事前訓練されたモデルに対するユーザーの信頼を損なう。
現在の文献は、事前訓練されたモデルに対する攻撃と防御の明確な分類を欠いている。
この分類法は、攻撃と防御をNo-Change、Input-Change、Model-Changeアプローチに分類する。
論文 参考訳(メタデータ) (2024-11-12T10:15:33Z) - FEDLAD: Federated Evaluation of Deep Leakage Attacks and Defenses [50.921333548391345]
フェデレーテッド・ラーニング(Federated Learning)は、分散型機械学習パラダイムをプライバシ保護するものだ。
近年の研究では、Deep Leakageと呼ばれる勾配技術によって、民間の真実データを復元できることが判明している。
本稿では、Deep Leakage攻撃と防御を評価するための総合的なベンチマークであるFEDLAD Framework(Federated Evaluation of Deep Leakage Attacks and Defenses)を紹介する。
論文 参考訳(メタデータ) (2024-11-05T11:42:26Z) - Machine Learning-Assisted Intrusion Detection for Enhancing Internet of Things Security [1.2369895513397127]
IoT(Internet of Things)に対する攻撃は、デバイス、アプリケーション、インタラクションのネットワーク化と統合化が進むにつれて増加している。
IoTデバイスを効率的にセキュアにするためには、侵入システムのリアルタイム検出が重要である。
本稿では、IoTセキュリティのための機械学習ベースの侵入検知戦略に関する最新の研究について検討する。
論文 参考訳(メタデータ) (2024-10-01T19:24:34Z) - Verification of Machine Unlearning is Fragile [48.71651033308842]
両タイプの検証戦略を回避できる2つの新しい非学習プロセスを導入する。
この研究は、機械学習検証の脆弱性と限界を強調し、機械学習の安全性に関するさらなる研究の道を開く。
論文 参考訳(メタデータ) (2024-08-01T21:37:10Z) - Threats, Attacks, and Defenses in Machine Unlearning: A Survey [14.03428437751312]
マシン・アンラーニング(MU)は、Safe AIを達成する可能性から、最近かなりの注目を集めている。
この調査は、機械学習における脅威、攻撃、防衛に関する広範な研究のギャップを埋めることを目的としている。
論文 参考訳(メタデータ) (2024-03-20T15:40:18Z) - Designing an attack-defense game: how to increase robustness of
financial transaction models via a competition [69.08339915577206]
金融セクターにおける悪意ある攻撃のエスカレートリスクを考えると、機械学習モデルの敵戦略と堅牢な防御メカニズムを理解することが重要である。
本研究の目的は、逐次的な財務データを入力として使用するニューラルネットワークモデルに対する敵攻撃と防御の現状とダイナミクスを調査することである。
我々は、現代の金融取引データにおける問題の現実的かつ詳細な調査を可能にする競争を設計した。
参加者は直接対決するので、実生活に近い環境で攻撃や防御が検討される。
論文 参考訳(メタデータ) (2023-08-22T12:53:09Z) - Dataset Security for Machine Learning: Data Poisoning, Backdoor Attacks,
and Defenses [150.64470864162556]
この作業は体系的に分類され、幅広いデータセット脆弱性とエクスプロイトを議論する。
様々な毒とバックドアの脅威モデルとそれらの関係を記述することに加えて,それらの統一分類法を展開する。
論文 参考訳(メタデータ) (2020-12-18T22:38:47Z) - Confidential Machine Learning on Untrusted Platforms: A Survey [10.45742327204133]
我々は機密機械学習(CML)の暗号的アプローチに焦点を当てる。
また、ハードウェア支援の機密コンピューティング環境における摂動ベースのアプローチやCMLなどの他の方向もカバーします。
この議論は、関連する脅威モデル、セキュリティの仮定、攻撃、設計哲学、およびデータユーティリティ、コスト、機密性間の関連するトレードオフの豊富なコンテキストを考慮するための包括的な方法を取ります。
論文 参考訳(メタデータ) (2020-12-15T08:57:02Z) - ML Privacy Meter: Aiding Regulatory Compliance by Quantifying the
Privacy Risks of Machine Learning [10.190911271176201]
機械学習モデルは、モデル予測とパラメータを通じて間接的にデータについて明らかにすることで、データにさらなるプライバシーリスクをもたらす。
モデルからのデータに対して、プライバシのリスクを定量化するツールがすぐに必要になります。
ML Privacy Meterは、アートメンバーシップ推論攻撃手法の状態を通じ、モデルからのデータに対するプライバシリスクを定量化するツールである。
論文 参考訳(メタデータ) (2020-07-18T06:21:35Z) - Adversarial Machine Learning Attacks and Defense Methods in the Cyber
Security Domain [58.30296637276011]
本稿では,機械学習技術に基づくセキュリティソリューションに対する敵攻撃に関する最新の研究を要約する。
サイバーセキュリティドメインでエンドツーエンドの敵攻撃を実装するという、ユニークな課題を議論するのは、これが初めてである。
論文 参考訳(メタデータ) (2020-07-05T18:22:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。