論文の概要: A Survey of Model Extraction Attacks and Defenses in Distributed Computing Environments
- arxiv url: http://arxiv.org/abs/2502.16065v1
- Date: Sat, 22 Feb 2025 03:46:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 15:58:48.455049
- Title: A Survey of Model Extraction Attacks and Defenses in Distributed Computing Environments
- Title(参考訳): 分散コンピューティング環境におけるモデル抽出攻撃と防御の実態調査
- Authors: Kaixiang Zhao, Lincan Li, Kaize Ding, Neil Zhenqiang Gong, Yue Zhao, Yushun Dong,
- Abstract要約: モデル抽出攻撃(MEA)は、敵がモデルを盗み、知的財産と訓練データを公開することによって、現代の機械学習システムを脅かす。
この調査は、クラウド、エッジ、フェデレーションのユニークな特性がどのように攻撃ベクトルや防御要件を形作るのかを、緊急に理解する必要に起因している。
本研究は, 自動運転車, 医療, 金融サービスといった重要な分野において, 環境要因がセキュリティ戦略にどう影響するかを実証し, 攻撃手法と防衛機構の進化を系統的に検討する。
- 参考スコア(独自算出の注目度): 55.60375624503877
- License:
- Abstract: Model Extraction Attacks (MEAs) threaten modern machine learning systems by enabling adversaries to steal models, exposing intellectual property and training data. With the increasing deployment of machine learning models in distributed computing environments, including cloud, edge, and federated learning settings, each paradigm introduces distinct vulnerabilities and challenges. Without a unified perspective on MEAs across these distributed environments, organizations risk fragmented defenses, inadequate risk assessments, and substantial economic and privacy losses. This survey is motivated by the urgent need to understand how the unique characteristics of cloud, edge, and federated deployments shape attack vectors and defense requirements. We systematically examine the evolution of attack methodologies and defense mechanisms across these environments, demonstrating how environmental factors influence security strategies in critical sectors such as autonomous vehicles, healthcare, and financial services. By synthesizing recent advances in MEAs research and discussing the limitations of current evaluation practices, this survey provides essential insights for developing robust and adaptive defense strategies. Our comprehensive approach highlights the importance of integrating protective measures across the entire distributed computing landscape to ensure the secure deployment of machine learning models.
- Abstract(参考訳): モデル抽出攻撃(MEA)は、敵がモデルを盗み、知的財産と訓練データを公開することによって、現代の機械学習システムを脅かす。
クラウド、エッジ、フェデレートされた学習設定など、分散コンピューティング環境における機械学習モデルのデプロイの増加に伴い、各パラダイムは、それぞれ異なる脆弱性と課題を導入している。
これらの分散環境におけるMEAの統一的な視点がなければ、組織は断片化された防衛、不十分なリスク評価、実質的な経済とプライバシの損失をリスクとします。
この調査は、クラウド、エッジ、フェデレーションのユニークな特性がどのように攻撃ベクトルや防御要件を形作るのかを、緊急に理解する必要に起因している。
本研究は, 自動運転車, 医療, 金融サービスといった重要な分野において, 環境要因がセキュリティ戦略にどう影響するかを実証し, 攻撃手法と防衛機構の進化を系統的に検討する。
近年のMEA研究の進歩を合成し、現在の評価実践の限界を議論することによって、堅牢で適応的な防衛戦略を開発する上で不可欠な洞察を提供する。
我々の包括的なアプローチは、機械学習モデルの安全なデプロイを保証するために、分散コンピューティングのランドスケープ全体にわたって保護措置を統合することの重要性を強調しています。
関連論文リスト
- Safety at Scale: A Comprehensive Survey of Large Model Safety [299.801463557549]
我々は、敵攻撃、データ中毒、バックドア攻撃、ジェイルブレイクとプロンプトインジェクション攻撃、エネルギー遅延攻撃、データとモデル抽出攻撃、出現するエージェント固有の脅威を含む、大規模なモデルに対する安全脅威の包括的分類を提示する。
我々は、大規模なモデル安全性におけるオープンな課題を特定し、議論し、包括的な安全性評価、スケーラブルで効果的な防御機構、持続可能なデータプラクティスの必要性を強調します。
論文 参考訳(メタデータ) (2025-02-02T05:14:22Z) - Simulation of Multi-Stage Attack and Defense Mechanisms in Smart Grids [2.0766068042442174]
電力グリッドのインフラと通信のダイナミクスを再現するシミュレーション環境を導入する。
このフレームワークは多様なリアルな攻撃データを生成し、サイバー脅威を検出し緩和するための機械学習アルゴリズムを訓練する。
また、高度な意思決定支援システムを含む、新興のセキュリティ技術を評価するための、制御された柔軟なプラットフォームも提供する。
論文 参考訳(メタデータ) (2024-12-09T07:07:17Z) - Membership Inference Attacks and Defenses in Federated Learning: A Survey [25.581491871183815]
フェデレートラーニング(Federated Learning)は、クライアントがローカルにモデルをトレーニングし、モデル更新を共有してグローバルモデルを開発する、分散機械学習アプローチである。
これは、特定のサンプルがトレーニングセットの一部であるかどうかを判断することで、クライアントのプライバシをターゲットとする。
これらの攻撃は、医療システム内の医療診断など、現実世界の応用における機密情報を侵害する可能性がある。
論文 参考訳(メタデータ) (2024-12-09T02:39:58Z) - SoK: Unifying Cybersecurity and Cybersafety of Multimodal Foundation Models with an Information Theory Approach [58.93030774141753]
MFM(Multimodal foundation model)は、人工知能の大幅な進歩を表す。
本稿では,マルチモーダル学習におけるサイバーセーフティとサイバーセキュリティを概念化する。
我々は、これらの概念をMFMに統一し、重要な脅威を特定するための総合的知識体系化(SoK)を提案する。
論文 参考訳(メタデータ) (2024-11-17T23:06:20Z) - New Emerged Security and Privacy of Pre-trained Model: a Survey and Outlook [54.24701201956833]
セキュリティとプライバシーの問題は、事前訓練されたモデルに対するユーザーの信頼を損なう。
現在の文献は、事前訓練されたモデルに対する攻撃と防御の明確な分類を欠いている。
この分類法は、攻撃と防御をNo-Change、Input-Change、Model-Changeアプローチに分類する。
論文 参考訳(メタデータ) (2024-11-12T10:15:33Z) - CALoR: Towards Comprehensive Model Inversion Defense [43.2642796582236]
Model Inversion Attacks (MIAs)は、プライバシに敏感なトレーニングデータを、リリースされた機械学習モデルにエンコードされた知識から回復することを目的としている。
MIA分野の最近の進歩は、複数のシナリオにおける攻撃性能を大幅に向上させた。
信頼性適応と低ランク圧縮を統合した堅牢な防御機構を提案する。
論文 参考訳(メタデータ) (2024-10-08T08:44:01Z) - Survey of Security and Data Attacks on Machine Unlearning In Financial and E-Commerce [0.0]
本稿では、金融・電子商取引アプリケーションに焦点をあて、機械学習におけるセキュリティとデータアタックの状況について調査する。
これらのリスクを軽減するため、差分プライバシー、堅牢な暗号保証、ZKP(Zero-Knowledge Proofs)など、さまざまな防衛戦略が検討されている。
この調査は、セキュアマシンアンラーニングにおける継続的な研究とイノベーションの必要性と、進化する攻撃ベクトルに対する強力な防御を開発することの重要性を強調している。
論文 参考訳(メタデータ) (2024-09-29T00:30:36Z) - EARBench: Towards Evaluating Physical Risk Awareness for Task Planning of Foundation Model-based Embodied AI Agents [53.717918131568936]
EAI(Embodied AI)は、高度なAIモデルを現実世界のインタラクションのための物理的なエンティティに統合する。
高レベルのタスク計画のためのEAIエージェントの"脳"としてのファンデーションモデルは、有望な結果を示している。
しかし、これらのエージェントの物理的環境への展開は、重大な安全性上の課題を呈している。
本研究では,EAIシナリオにおける身体的リスクの自動評価のための新しいフレームワークEARBenchを紹介する。
論文 参考訳(メタデータ) (2024-08-08T13:19:37Z) - Breaking Down the Defenses: A Comparative Survey of Attacks on Large Language Models [18.624280305864804]
大規模言語モデル(LLM)は自然言語処理(NLP)分野の基盤となっている。
本稿では,LSMを標的とした様々な攻撃形態の包括的調査を行う。
モデルアウトプットを操作するための敵攻撃、モデルトレーニングに影響を与えるデータ中毒、データエクスプロイトのトレーニングに関連するプライバシー上の懸念などについて調べる。
論文 参考訳(メタデータ) (2024-03-03T04:46:21Z) - ML-Doctor: Holistic Risk Assessment of Inference Attacks Against Machine
Learning Models [64.03398193325572]
機械学習(ML)モデルに対する推論攻撃により、敵はトレーニングデータやモデルパラメータなどを学ぶことができる。
私たちは、メンバシップ推論、モデル反転、属性推論、モデル盗難の4つの攻撃に集中しています。
私たちの分析では、MLモデルオーナがモデルをデプロイするリスクを評価することができる、モジュール化された再使用可能なソフトウェアであるML-Doctorに依存しています。
論文 参考訳(メタデータ) (2021-02-04T11:35:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。