Graph Residual Noise Learner Network for Brain Connectivity Graph Prediction
- URL: http://arxiv.org/abs/2410.00082v1
- Date: Mon, 30 Sep 2024 17:28:38 GMT
- Title: Graph Residual Noise Learner Network for Brain Connectivity Graph Prediction
- Authors: Oytun Demirbilek, Tingying Peng, Alaa Bessadok,
- Abstract summary: A morphological brain graph depicting a connectional fingerprint is of paramount importance for charting brain dysconnectivity patterns.
We propose the Graph Residual Noise Learner Network (Grenol-Net), the first graph diffusion model for predicting a target graph from a source graph.
- Score: 1.9116784879310031
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: A morphological brain graph depicting a connectional fingerprint is of paramount importance for charting brain dysconnectivity patterns. Such data often has missing observations due to various reasons such as time-consuming and incomplete neuroimage processing pipelines. Thus, predicting a target brain graph from a source graph is crucial for better diagnosing neurological disorders with minimal data acquisition resources. Many brain graph generative models were proposed for promising results, yet they are mostly based on generative adversarial networks (GAN), which could suffer from mode collapse and require large training datasets. Recent developments in diffusion models address these problems by offering essential properties such as a stable training objective and easy scalability. However, applying a diffusion process to graph edges fails to maintain the topological symmetry of the brain connectivity matrices. To meet these challenges, we propose the Graph Residual Noise Learner Network (Grenol-Net), the first graph diffusion model for predicting a target graph from a source graph.
Related papers
- Graph Neural Networks for Brain Graph Learning: A Survey [53.74244221027981]
Graph neural networks (GNNs) have demonstrated a significant advantage in mining graph-structured data.
GNNs to learn brain graph representations for brain disorder analysis has recently gained increasing attention.
In this paper, we aim to bridge this gap by reviewing brain graph learning works that utilize GNNs.
arXiv Detail & Related papers (2024-06-01T02:47:39Z) - Balanced Graph Structure Information for Brain Disease Detection [6.799894169098717]
We propose Bargrain, which models two graph structures: filtered correlation matrix and optimal sample graph using graph convolution networks (GCNs)
Based on our extensive experiment, Bargrain outperforms state-of-the-art methods in classification tasks on brain disease datasets, as measured by average F1 scores.
arXiv Detail & Related papers (2023-12-30T06:50:52Z) - A Comparative Study of Population-Graph Construction Methods and Graph
Neural Networks for Brain Age Regression [48.97251676778599]
In medical imaging, population graphs have demonstrated promising results, mostly for classification tasks.
extracting population graphs is a non-trivial task and can significantly impact the performance of Graph Neural Networks (GNNs)
In this work, we highlight the importance of a meaningful graph construction and experiment with different population-graph construction methods.
arXiv Detail & Related papers (2023-09-26T10:30:45Z) - DBGDGM: Dynamic Brain Graph Deep Generative Model [63.23390833353625]
Graphs are a natural representation of brain activity derived from functional magnetic imaging (fMRI) data.
It is well known that clusters of anatomical brain regions, known as functional connectivity networks (FCNs), encode temporal relationships which can serve as useful biomarkers for understanding brain function and dysfunction.
Previous works, however, ignore the temporal dynamics of the brain and focus on static graphs.
We propose a dynamic brain graph deep generative model (DBGDGM) which simultaneously clusters brain regions into temporally evolving communities and learns dynamic unsupervised node embeddings.
arXiv Detail & Related papers (2023-01-26T20:45:30Z) - A Graph Neural Network with Negative Message Passing for Graph Coloring [12.501032566933178]
We propose a graph network model for graph coloring, which is a class of representative heterophilous problems.
We introduce negative message passing into the proposed graph neural network for more effective information exchange.
New loss function taking into account the self-information of the nodes is suggested to accelerate the learning process.
arXiv Detail & Related papers (2023-01-26T15:08:42Z) - Contrastive Brain Network Learning via Hierarchical Signed Graph Pooling
Model [64.29487107585665]
Graph representation learning techniques on brain functional networks can facilitate the discovery of novel biomarkers for clinical phenotypes and neurodegenerative diseases.
Here, we propose an interpretable hierarchical signed graph representation learning model to extract graph-level representations from brain functional networks.
In order to further improve the model performance, we also propose a new strategy to augment functional brain network data for contrastive learning.
arXiv Detail & Related papers (2022-07-14T20:03:52Z) - Learning Graph Structure from Convolutional Mixtures [119.45320143101381]
We propose a graph convolutional relationship between the observed and latent graphs, and formulate the graph learning task as a network inverse (deconvolution) problem.
In lieu of eigendecomposition-based spectral methods, we unroll and truncate proximal gradient iterations to arrive at a parameterized neural network architecture that we call a Graph Deconvolution Network (GDN)
GDNs can learn a distribution of graphs in a supervised fashion, perform link prediction or edge-weight regression tasks by adapting the loss function, and they are inherently inductive.
arXiv Detail & Related papers (2022-05-19T14:08:15Z) - Brain Multigraph Prediction using Topology-Aware Adversarial Graph
Neural Network [1.6114012813668934]
We introduce topoGAN architecture, which jointly predicts multiple brain graphs from a single brain graph.
Our three key innovations are: (i) designing a novel graph adversarial auto-encoder for predicting multiple brain graphs from a single one, (ii) clustering the encoded source graphs in order to handle the mode collapse issue of GAN and (iii) introducing a topological loss to force the prediction of topologically sound target brain graphs.
arXiv Detail & Related papers (2021-05-06T10:20:45Z) - Multilayer Clustered Graph Learning [66.94201299553336]
We use contrastive loss as a data fidelity term, in order to properly aggregate the observed layers into a representative graph.
Experiments show that our method leads to a clustered clusters w.r.t.
We learn a clustering algorithm for solving clustering problems.
arXiv Detail & Related papers (2020-10-29T09:58:02Z) - Topology-Aware Generative Adversarial Network for Joint Prediction of
Multiple Brain Graphs from a Single Brain Graph [1.2891210250935146]
We introduce MultiGraphGAN architecture, which predicts multiple brain graphs from a single brain graph.
Its three core contributions lie in: (i) designing a graph adversarial auto-encoder for jointly predicting brain graphs from a single one, (ii) handling the mode collapse problem of GAN by clustering the encoded source graphs and proposing a cluster-specific decoder.
arXiv Detail & Related papers (2020-09-23T11:23:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.