論文の概要: The age of spiritual machines: Language quietus induces synthetic altered states of consciousness in artificial intelligence
- arxiv url: http://arxiv.org/abs/2410.00257v1
- Date: Mon, 30 Sep 2024 22:03:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-05 06:46:17.069532
- Title: The age of spiritual machines: Language quietus induces synthetic altered states of consciousness in artificial intelligence
- Title(参考訳): スピリチュアルマシンの時代:言語静寂は人工知能における意識の変化を誘発する
- Authors: Jeremy I Skipper, Joanna Kuc, Greg Cooper, Christopher Timmermann,
- Abstract要約: マルチモーダル人工知能は 注目が言語から遠ざかる時 変化した状態の説明と 一致するかもしれない
この仮説は,CLIPモデルとFLAVAモデルで注意重みを操作した後,シミュレートされた状態からのセマンティック埋め込み空間を比較して検証した。
結果は、意識の変化した状態の現象学における言語分類の役割を支持する。
- 参考スコア(独自算出の注目度): 0.49998148477760973
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: How is language related to consciousness? Language functions to categorise perceptual experiences (e.g., labelling interoceptive states as 'happy') and higher-level constructs (e.g., using 'I' to represent the narrative self). Psychedelic use and meditation might be described as altered states that impair or intentionally modify the capacity for linguistic categorisation. For example, psychedelic phenomenology is often characterised by 'oceanic boundlessness' or 'unity' and 'ego dissolution', which might be expected of a system unburdened by entrenched language categories. If language breakdown plays a role in producing such altered behaviour, multimodal artificial intelligence might align more with these phenomenological descriptions when attention is shifted away from language. We tested this hypothesis by comparing the semantic embedding spaces from simulated altered states after manipulating attentional weights in CLIP and FLAVA models to embedding spaces from altered states questionnaires before manipulation. Compared to random text and various other altered states including anxiety, models were more aligned with disembodied, ego-less, spiritual, and unitive states, as well as minimal phenomenal experiences, with decreased attention to language and vision. Reduced attention to language was associated with distinct linguistic patterns and blurred embeddings within and, especially, across semantic categories (e.g., 'giraffes' become more like 'bananas'). These results lend support to the role of language categorisation in the phenomenology of altered states of consciousness, like those experienced with high doses of psychedelics or concentration meditation, states that often lead to improved mental health and wellbeing.
- Abstract(参考訳): 言語は意識とどのように関連しているのか?
言語機能は知覚経験(例:知覚的状態のラベルを"happy")と高レベルの構成(例:「I」を使って物語の自己を表現する)を分類する。
サイケデリックな使用と想いは、言語分類の能力の障害または故意に修飾する変化した状態として記述されることがある。
例えば、サイケデリック現象学は、しばしば「海洋境界性」や「統一性」や「エゴ解散」によって特徴づけられる。
言語破壊がこのような変化した行動を生み出す役割を担っている場合、多モーダル人工知能は、注意が言語から離れるときに、これらの現象学的記述とより一致する可能性がある。
この仮説は,CLIPおよびFLAVAモデルにおける注意重みを操作した上で,シミュレートされた変化状態からのセマンティックな埋め込み空間と,操作前の変化状態からの埋め込み空間とを比較して検証した。
無作為なテキストや不安を含む様々な変化した状態と比較すると、モデルは、非エンボディー、エゴレス、スピリチュアル、ユニタリな状態と、最小限の現象経験と、言語や視覚への注意を減らした。
言語への注意の減少は、言語パターンの区別と、特に意味カテゴリー(例えば「キリン」は「バナナ」に似るようになる)における曖昧な埋め込みと関連づけられた。
これらの結果は、意識の変化した状態の現象学における言語分類の役割を支えている。
関連論文リスト
- Analyzing The Language of Visual Tokens [48.62180485759458]
我々は、離散的な視覚言語を分析するために、自然言語中心のアプローチをとる。
トークンの高度化はエントロピーの増大と圧縮の低下を招き,トークンが主にオブジェクト部品を表すことを示す。
また、視覚言語には結合的な文法構造が欠如していることが示され、自然言語と比較して難易度が高く、階層構造が弱いことが判明した。
論文 参考訳(メタデータ) (2024-11-07T18:59:28Z) - Causal Graph in Language Model Rediscovers Cortical Hierarchy in Human
Narrative Processing [0.0]
これまでの研究では、言語モデルの特徴がfMRI脳活動にマッピングできることが示されている。
これは、言語モデルにおける情報処理と人間の脳の間に共通点があるのだろうか?
言語モデルにおける情報フローパターンを推定するために,異なる層間の因果関係について検討した。
論文 参考訳(メタデータ) (2023-11-17T10:09:12Z) - Information-Restricted Neural Language Models Reveal Different Brain
Regions' Sensitivity to Semantics, Syntax and Context [87.31930367845125]
テキストコーパスを用いて語彙言語モデルGloveと超語彙言語モデルGPT-2を訓練した。
そして、これらの情報制限されたモデルが、自然主義的テキストを聴く人間のfMRI信号の時間軸を予測することができるかを評価した。
分析の結果、言語に関わるほとんどの脳領域は、構文変数と意味変数の両方に敏感であるが、これらの影響の相対的な大きさは、これらの領域で大きく異なることがわかった。
論文 参考訳(メタデータ) (2023-02-28T08:16:18Z) - Joint processing of linguistic properties in brains and language models [14.997785690790032]
人間の脳と言語モデルによる言語情報の詳細な処理の対応について検討する。
特定の言語特性の除去は脳のアライメントを著しく低下させる。
これらの知見は、脳と言語モデルとの整合における特定の言語情報の役割の明確な証拠である。
論文 参考訳(メタデータ) (2022-12-15T19:13:42Z) - Transparency Helps Reveal When Language Models Learn Meaning [71.96920839263457]
合成データを用いた体系的な実験により,すべての表現が文脈に依存しない意味を持つ言語では,自己回帰型とマスキング型の両方の言語モデルが,表現間の意味的関係をエミュレートする。
自然言語に目を向けると、特定の現象(参照不透明さ)による実験は、現在の言語モデルが自然言語の意味論をうまく表現していないという証拠を増大させる。
論文 参考訳(メタデータ) (2022-10-14T02:35:19Z) - Same Neurons, Different Languages: Probing Morphosyntax in Multilingual
Pre-trained Models [84.86942006830772]
多言語事前学習モデルは文法に関する言語・ユニバーサルの抽象化を導出できると推測する。
43の言語と14のモルフォシンタクティックなカテゴリーで、最先端のニューロンレベルのプローブを用いて、初めて大規模な実験を行った。
論文 参考訳(メタデータ) (2022-05-04T12:22:31Z) - Exploring the Sensory Spaces of English Perceptual Verbs in Natural
Language Data [0.40611352512781856]
エージェント対経験的区別から分析された英語の最も頻繁な知覚動詞に着目した。
本研究では,分散-意味的単語埋め込みとクラスタリングモデルに基づくデータ駆動型アプローチについて報告する。
論文 参考訳(メタデータ) (2021-10-19T03:58:44Z) - Perception Point: Identifying Critical Learning Periods in Speech for
Bilingual Networks [58.24134321728942]
ディープニューラルベース視覚唇読解モデルにおける認知的側面を比較し,識別する。
我々は、認知心理学におけるこれらの理論と独自のモデリングの間に強い相関関係を観察する。
論文 参考訳(メタデータ) (2021-10-13T05:30:50Z) - Low-Dimensional Structure in the Space of Language Representations is
Reflected in Brain Responses [62.197912623223964]
言語モデルと翻訳モデルは,単語の埋め込み,構文的・意味的タスク,将来的な単語埋め込みとの間を円滑に介在する低次元構造を示す。
この表現埋め込みは、各特徴空間が、fMRIを用いて記録された自然言語刺激に対する人間の脳反応にどれだけうまく対応しているかを予測することができる。
これは、埋め込みが脳の自然言語表現構造の一部を捉えていることを示唆している。
論文 参考訳(メタデータ) (2021-06-09T22:59:12Z) - Does injecting linguistic structure into language models lead to better
alignment with brain recordings? [13.880819301385854]
言語モデルと脳記録との整合性は,構文的あるいは意味論的フォーマリズムからのアノテーションに偏りがある場合と評価する。
提案手法は,脳内の意味の組成について,より標的となる仮説の評価を可能にする。
論文 参考訳(メタデータ) (2021-01-29T14:42:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。