Real-time Diverse Motion In-betweening with Space-time Control
- URL: http://arxiv.org/abs/2410.00270v1
- Date: Mon, 30 Sep 2024 22:45:53 GMT
- Title: Real-time Diverse Motion In-betweening with Space-time Control
- Authors: Yuchen Chu, Zeshi Yang,
- Abstract summary: In this work, we present a data-driven framework for generating diverse in-betweening motions for kinematic characters.
We demonstrate that our in-betweening approach can synthesize both locomotion and unstructured motions, enabling rich, versatile, and high-quality animation generation.
- Score: 4.910937238451485
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this work, we present a data-driven framework for generating diverse in-betweening motions for kinematic characters. Our approach injects dynamic conditions and explicit motion controls into the procedure of motion transitions. Notably, this integration enables a finer-grained spatial-temporal control by allowing users to impart additional conditions, such as duration, path, style, etc., into the in-betweening process. We demonstrate that our in-betweening approach can synthesize both locomotion and unstructured motions, enabling rich, versatile, and high-quality animation generation.
Related papers
- MotionClone: Training-Free Motion Cloning for Controllable Video Generation [41.621147782128396]
MotionClone is a training-free framework that enables motion cloning from reference videos to versatile motion-controlled video generation.
MotionClone exhibits proficiency in both global camera motion and local object motion, with notable superiority in terms of motion fidelity, textual alignment, and temporal consistency.
arXiv Detail & Related papers (2024-06-08T03:44:25Z) - FreeMotion: A Unified Framework for Number-free Text-to-Motion Synthesis [65.85686550683806]
This paper reconsiders motion generation and proposes to unify the single and multi-person motion by the conditional motion distribution.
Based on our framework, the current single-person motion spatial control method could be seamlessly integrated, achieving precise control of multi-person motion.
arXiv Detail & Related papers (2024-05-24T17:57:57Z) - MotionLCM: Real-time Controllable Motion Generation via Latent Consistency Model [29.93359157128045]
This work introduces MotionLCM, extending controllable motion generation to a real-time level.
We first propose the motion latent consistency model (MotionLCM) for motion generation, building upon the latent diffusion model.
By adopting one-step (or few-step) inference, we further improve the runtime efficiency of the motion latent diffusion model for motion generation.
arXiv Detail & Related papers (2024-04-30T17:59:47Z) - DiffusionPhase: Motion Diffusion in Frequency Domain [69.811762407278]
We introduce a learning-based method for generating high-quality human motion sequences from text descriptions.
Existing techniques struggle with motion diversity and smooth transitions in generating arbitrary-length motion sequences.
We develop a network encoder that converts the motion space into a compact yet expressive parameterized phase space.
arXiv Detail & Related papers (2023-12-07T04:39:22Z) - InterControl: Zero-shot Human Interaction Generation by Controlling Every Joint [67.6297384588837]
We introduce a novel controllable motion generation method, InterControl, to encourage the synthesized motions maintaining the desired distance between joint pairs.
We demonstrate that the distance between joint pairs for human-wise interactions can be generated using an off-the-shelf Large Language Model.
arXiv Detail & Related papers (2023-11-27T14:32:33Z) - Motion In-Betweening with Phase Manifolds [29.673541655825332]
This paper introduces a novel data-driven motion in-betweening system to reach target poses of characters by making use of phases variables learned by a Periodic Autoencoder.
Our approach utilizes a mixture-of-experts neural network model, in which the phases cluster movements in both space and time with different expert weights.
arXiv Detail & Related papers (2023-08-24T12:56:39Z) - MoFusion: A Framework for Denoising-Diffusion-based Motion Synthesis [73.52948992990191]
MoFusion is a new denoising-diffusion-based framework for high-quality conditional human motion synthesis.
We present ways to introduce well-known kinematic losses for motion plausibility within the motion diffusion framework.
We demonstrate the effectiveness of MoFusion compared to the state of the art on established benchmarks in the literature.
arXiv Detail & Related papers (2022-12-08T18:59:48Z) - Executing your Commands via Motion Diffusion in Latent Space [51.64652463205012]
We propose a Motion Latent-based Diffusion model (MLD) to produce vivid motion sequences conforming to the given conditional inputs.
Our MLD achieves significant improvements over the state-of-the-art methods among extensive human motion generation tasks.
arXiv Detail & Related papers (2022-12-08T03:07:00Z) - MoDi: Unconditional Motion Synthesis from Diverse Data [51.676055380546494]
We present MoDi, an unconditional generative model that synthesizes diverse motions.
Our model is trained in a completely unsupervised setting from a diverse, unstructured and unlabeled motion dataset.
We show that despite the lack of any structure in the dataset, the latent space can be semantically clustered.
arXiv Detail & Related papers (2022-06-16T09:06:25Z) - Real-time Controllable Motion Transition for Characters [14.88407656218885]
Real-time in-between motion generation is universally required in games and highly desirable in existing animation pipelines.
Our approach consists of two key components: motion manifold and conditional transitioning.
We show that our method is able to generate high-quality motions measured under multiple metrics.
arXiv Detail & Related papers (2022-05-05T10:02:54Z) - Transition Motion Tensor: A Data-Driven Approach for Versatile and
Controllable Agents in Physically Simulated Environments [6.8438089867929905]
This paper proposes a data-driven framework that creates novel and physically accurate transitions outside of the motion dataset.
It enables simulated characters to adopt new motion skills efficiently and robustly without modifying existing ones.
arXiv Detail & Related papers (2021-11-30T02:17:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.