GSPR: Multimodal Place Recognition Using 3D Gaussian Splatting for Autonomous Driving
- URL: http://arxiv.org/abs/2410.00299v1
- Date: Tue, 1 Oct 2024 00:43:45 GMT
- Title: GSPR: Multimodal Place Recognition Using 3D Gaussian Splatting for Autonomous Driving
- Authors: Zhangshuo Qi, Junyi Ma, Jingyi Xu, Zijie Zhou, Luqi Cheng, Guangming Xiong,
- Abstract summary: multimodal place recognition has gained increasing attention due to their ability to overcome weaknesses of uni sensor systems.
We propose a 3D Gaussian-based multimodal place recognition neural network dubbed GSPR.
- Score: 9.023864430027333
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Place recognition is a crucial module to ensure autonomous vehicles obtain usable localization information in GPS-denied environments. In recent years, multimodal place recognition methods have gained increasing attention due to their ability to overcome the weaknesses of unimodal sensor systems by leveraging complementary information from different modalities. However, challenges arise from the necessity of harmonizing data across modalities and exploiting the spatio-temporal correlations between them sufficiently. In this paper, we propose a 3D Gaussian Splatting-based multimodal place recognition neural network dubbed GSPR. It explicitly combines multi-view RGB images and LiDAR point clouds into a spatio-temporally unified scene representation with the proposed Multimodal Gaussian Splatting. A network composed of 3D graph convolution and transformer is designed to extract high-level spatio-temporal features and global descriptors from the Gaussian scenes for place recognition. We evaluate our method on the nuScenes dataset, and the experimental results demonstrate that our method can effectively leverage complementary strengths of both multi-view cameras and LiDAR, achieving SOTA place recognition performance while maintaining solid generalization ability. Our open-source code is available at https://github.com/QiZS-BIT/GSPR.
Related papers
- PVAFN: Point-Voxel Attention Fusion Network with Multi-Pooling Enhancing for 3D Object Detection [59.355022416218624]
integration of point and voxel representations is becoming more common in LiDAR-based 3D object detection.
We propose a novel two-stage 3D object detector, called Point-Voxel Attention Fusion Network (PVAFN)
PVAFN uses a multi-pooling strategy to integrate both multi-scale and region-specific information effectively.
arXiv Detail & Related papers (2024-08-26T19:43:01Z) - MSSPlace: Multi-Sensor Place Recognition with Visual and Text Semantics [41.94295877935867]
We study the impact of leveraging a multi-camera setup and integrating diverse data sources for multimodal place recognition.
Our proposed method named MSSPlace utilizes images from multiple cameras, LiDAR point clouds, semantic segmentation masks, and text annotations to generate comprehensive place descriptors.
arXiv Detail & Related papers (2024-07-22T14:24:56Z) - OverlapMamba: Novel Shift State Space Model for LiDAR-based Place Recognition [10.39935021754015]
We develop OverlapMamba, a novel network for place recognition as sequences.
Our method effectively detects loop closures showing even when traversing previously visited locations from different directions.
Relying on raw range view inputs, it outperforms typical LiDAR and multi-view combination methods in time complexity and speed.
arXiv Detail & Related papers (2024-05-13T17:46:35Z) - Leveraging Neural Radiance Field in Descriptor Synthesis for Keypoints Scene Coordinate Regression [1.2974519529978974]
This paper introduces a pipeline for keypoint descriptor synthesis using Neural Radiance Field (NeRF)
generating novel poses and feeding them into a trained NeRF model to create new views, our approach enhances the KSCR's capabilities in data-scarce environments.
The proposed system could significantly improve localization accuracy by up to 50% and cost only a fraction of time for data synthesis.
arXiv Detail & Related papers (2024-03-15T13:40:37Z) - LCPR: A Multi-Scale Attention-Based LiDAR-Camera Fusion Network for
Place Recognition [11.206532393178385]
We present a novel neural network named LCPR for robust multimodal place recognition.
Our method can effectively utilize multi-view camera and LiDAR data to improve the place recognition performance.
arXiv Detail & Related papers (2023-11-06T15:39:48Z) - UnLoc: A Universal Localization Method for Autonomous Vehicles using
LiDAR, Radar and/or Camera Input [51.150605800173366]
UnLoc is a novel unified neural modeling approach for localization with multi-sensor input in all weather conditions.
Our method is extensively evaluated on Oxford Radar RobotCar, ApolloSouthBay and Perth-WA datasets.
arXiv Detail & Related papers (2023-07-03T04:10:55Z) - Unleash the Potential of Image Branch for Cross-modal 3D Object
Detection [67.94357336206136]
We present a new cross-modal 3D object detector, namely UPIDet, which aims to unleash the potential of the image branch from two aspects.
First, UPIDet introduces a new 2D auxiliary task called normalized local coordinate map estimation.
Second, we discover that the representational capability of the point cloud backbone can be enhanced through the gradients backpropagated from the training objectives of the image branch.
arXiv Detail & Related papers (2023-01-22T08:26:58Z) - Progressive Coordinate Transforms for Monocular 3D Object Detection [52.00071336733109]
We propose a novel and lightweight approach, dubbed em Progressive Coordinate Transforms (PCT) to facilitate learning coordinate representations.
In this paper, we propose a novel and lightweight approach, dubbed em Progressive Coordinate Transforms (PCT) to facilitate learning coordinate representations.
arXiv Detail & Related papers (2021-08-12T15:22:33Z) - Searching Multi-Rate and Multi-Modal Temporal Enhanced Networks for
Gesture Recognition [89.0152015268929]
We propose the first neural architecture search (NAS)-based method for RGB-D gesture recognition.
The proposed method includes two key components: 1) enhanced temporal representation via the 3D Central Difference Convolution (3D-CDC) family, and optimized backbones for multi-modal-rate branches and lateral connections.
The resultant multi-rate network provides a new perspective to understand the relationship between RGB and depth modalities and their temporal dynamics.
arXiv Detail & Related papers (2020-08-21T10:45:09Z) - Spatial-Spectral Residual Network for Hyperspectral Image
Super-Resolution [82.1739023587565]
We propose a novel spectral-spatial residual network for hyperspectral image super-resolution (SSRNet)
Our method can effectively explore spatial-spectral information by using 3D convolution instead of 2D convolution, which enables the network to better extract potential information.
In each unit, we employ spatial and temporal separable 3D convolution to extract spatial and spectral information, which not only reduces unaffordable memory usage and high computational cost, but also makes the network easier to train.
arXiv Detail & Related papers (2020-01-14T03:34:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.