RadGazeGen: Radiomics and Gaze-guided Medical Image Generation using Diffusion Models
- URL: http://arxiv.org/abs/2410.00307v1
- Date: Tue, 1 Oct 2024 01:10:07 GMT
- Title: RadGazeGen: Radiomics and Gaze-guided Medical Image Generation using Diffusion Models
- Authors: Moinak Bhattacharya, Gagandeep Singh, Shubham Jain, Prateek Prasanna,
- Abstract summary: RadGazeGen is a framework for integrating experts' eye gaze patterns and radiomic feature maps as controls to text-to-image diffusion models.
- Score: 11.865553250973589
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we present RadGazeGen, a novel framework for integrating experts' eye gaze patterns and radiomic feature maps as controls to text-to-image diffusion models for high fidelity medical image generation. Despite the recent success of text-to-image diffusion models, text descriptions are often found to be inadequate and fail to convey detailed disease-specific information to these models to generate clinically accurate images. The anatomy, disease texture patterns, and location of the disease are extremely important to generate realistic images; moreover the fidelity of image generation can have significant implications in downstream tasks involving disease diagnosis or treatment repose assessment. Hence, there is a growing need to carefully define the controls used in diffusion models for medical image generation. Eye gaze patterns of radiologists are important visuo-cognitive information, indicative of subtle disease patterns and spatial location. Radiomic features further provide important subvisual cues regarding disease phenotype. In this work, we propose to use these gaze patterns in combination with standard radiomics descriptors, as controls, to generate anatomically correct and disease-aware medical images. RadGazeGen is evaluated for image generation quality and diversity on the REFLACX dataset. To demonstrate clinical applicability, we also show classification performance on the generated images from the CheXpert test set (n=500) and long-tailed learning performance on the MIMIC-CXR-LT test set (n=23550).
Related papers
- Deep Generative Models Unveil Patterns in Medical Images Through Vision-Language Conditioning [3.4299097748670255]
Deep generative models have significantly advanced medical imaging analysis by enhancing dataset size and quality.
We employ a generative structure with hybrid conditions, combining clinical data and segmentation masks to guide the image synthesis process.
Our approach differs from and presents a more challenging task than traditional medical report-guided synthesis due to the less visual correlation of our clinical information with the images.
arXiv Detail & Related papers (2024-10-17T17:48:36Z) - VALD-MD: Visual Attribution via Latent Diffusion for Medical Diagnostics [0.0]
Visual attribution in medical imaging seeks to make evident the diagnostically-relevant components of a medical image.
We here present a novel generative visual attribution technique, one that leverages latent diffusion models in combination with domain-specific large language models.
The resulting system also exhibits a range of latent capabilities including zero-shot localized disease induction.
arXiv Detail & Related papers (2024-01-02T19:51:49Z) - Trade-offs in Fine-tuned Diffusion Models Between Accuracy and
Interpretability [5.865936619867771]
We unravel a consequential trade-off between image fidelity as gauged by conventional metrics and model interpretability in generative diffusion models.
We present a set of design principles for the development of truly interpretable generative models.
arXiv Detail & Related papers (2023-03-31T09:11:26Z) - Adapting Pretrained Vision-Language Foundational Models to Medical
Imaging Domains [3.8137985834223502]
Building generative models for medical images that faithfully depict clinical context may help alleviate the paucity of healthcare datasets.
We explore the sub-components of the Stable Diffusion pipeline to fine-tune the model to generate medical images.
Our best-performing model improves upon the stable diffusion baseline and can be conditioned to insert a realistic-looking abnormality on a synthetic radiology image.
arXiv Detail & Related papers (2022-10-09T01:43:08Z) - Medical Image Captioning via Generative Pretrained Transformers [57.308920993032274]
We combine two language models, the Show-Attend-Tell and the GPT-3, to generate comprehensive and descriptive radiology records.
The proposed model is tested on two medical datasets, the Open-I, MIMIC-CXR, and the general-purpose MS-COCO.
arXiv Detail & Related papers (2022-09-28T10:27:10Z) - Texture Characterization of Histopathologic Images Using Ecological
Diversity Measures and Discrete Wavelet Transform [82.53597363161228]
This paper proposes a method for characterizing texture across histopathologic images with a considerable success rate.
It is possible to quantify the intrinsic properties of such images with promising accuracy on two HI datasets.
arXiv Detail & Related papers (2022-02-27T02:19:09Z) - Generative Residual Attention Network for Disease Detection [51.60842580044539]
We present a novel approach for disease generation in X-rays using a conditional generative adversarial learning.
We generate a corresponding radiology image in a target domain while preserving the identity of the patient.
We then use the generated X-ray image in the target domain to augment our training to improve the detection performance.
arXiv Detail & Related papers (2021-10-25T14:15:57Z) - Variational Topic Inference for Chest X-Ray Report Generation [102.04931207504173]
Report generation for medical imaging promises to reduce workload and assist diagnosis in clinical practice.
Recent work has shown that deep learning models can successfully caption natural images.
We propose variational topic inference for automatic report generation.
arXiv Detail & Related papers (2021-07-15T13:34:38Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
We propose itvariational knowledge distillation (VKD), which is a new probabilistic inference framework for disease classification based on X-rays.
We demonstrate the effectiveness of our method on three public benchmark datasets with paired X-ray images and EHRs.
arXiv Detail & Related papers (2021-03-19T14:13:56Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.