Intelligent Repetition Counting for Unseen Exercises: A Few-Shot Learning Approach with Sensor Signals
- URL: http://arxiv.org/abs/2410.00407v2
- Date: Wed, 9 Oct 2024 06:37:36 GMT
- Title: Intelligent Repetition Counting for Unseen Exercises: A Few-Shot Learning Approach with Sensor Signals
- Authors: Yooseok Lim, Sujee Lee,
- Abstract summary: This study develops a method to automatically count exercise repetitions by analyzing IMU signals.
We propose a repetition counting technique utilizing a deep metric-based few-shot learning approach.
We show an 86.8% probability of accurately counting ten or more repetitions within a single set across 28 different exercises.
- Score: 0.4998632546280975
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sensing technology has significantly advanced in automating systems that reflect human movement, particularly in robotics and healthcare, where it is used to automatically detect target movements. This study develops a method to automatically count exercise repetitions by analyzing IMU signals, with a focus on a universal exercise repetition counting task that counts all types of exercise movements, including novel exercises not seen during training, using a single model. Since peak patterns can vary significantly between different exercises as well as between individuals performing the same exercise, the model needs to learn a complex embedding space of sensor data to generalize effectively. To address this challenge,we propose a repetition counting technique utilizing a deep metric-based few-shot learning approach, designed to handle both existing and novel exercises. By redefining the counting task as a few-shot classification problem, the method is capable of detecting peak repetition patterns in exercises not seen during training. The approach employs a Siamese network with triplet loss, optimizing the embedding space to distinguish between peak and non-peak frames. Evaluation results demonstrate the effectiveness of the proposed approach, showing an 86.8% probability of accurately counting ten or more repetitions within a single set across 28 different exercises. This performance highlights the model's ability to generalize across various exercise types, including those not present in the training data. Such robustness and adaptability make the system a strong candidate for real-time implementation in fitness and healthcare applications.
Related papers
- Reinforcement Learning with Action Sequence for Data-Efficient Robot Learning [62.3886343725955]
We introduce a novel RL algorithm that learns a critic network that outputs Q-values over a sequence of actions.
By explicitly training the value functions to learn the consequence of executing a series of current and future actions, our algorithm allows for learning useful value functions from noisy trajectories.
arXiv Detail & Related papers (2024-11-19T01:23:52Z) - Rehabilitation Exercise Quality Assessment through Supervised Contrastive Learning with Hard and Soft Negatives [2.166000001057538]
Exercise-based rehabilitation programs have proven to be effective in enhancing the quality of life and reducing mortality and rehospitalization rates.
These programs commonly prescribe a variety of exercise types, leading to a distinct challenge in rehabilitation exercise assessment datasets.
This paper introduces a novel supervised contrastive learning framework with hard and soft negative samples to train a single model applicable to all exercise types.
arXiv Detail & Related papers (2024-03-05T08:38:25Z) - Rethinking Classifier Re-Training in Long-Tailed Recognition: A Simple
Logits Retargeting Approach [102.0769560460338]
We develop a simple logits approach (LORT) without the requirement of prior knowledge of the number of samples per class.
Our method achieves state-of-the-art performance on various imbalanced datasets, including CIFAR100-LT, ImageNet-LT, and iNaturalist 2018.
arXiv Detail & Related papers (2024-03-01T03:27:08Z) - P\=uioio: On-device Real-Time Smartphone-Based Automated Exercise
Repetition Counting System [1.4050836886292868]
We introduce a deep learning based exercise repetition counting system for smartphones consisting of five components: (1) Pose estimation, (2) Thresholding, (3) Optical flow, (4) State machine, and (5) Counter.
The system is then implemented via a cross-platform mobile application named P=uioio that uses only the smartphone camera to track repetitions in real time for three standard exercises: Squats, Push-ups, and Pull-ups.
arXiv Detail & Related papers (2023-07-22T01:38:02Z) - A Competitive Learning Approach for Specialized Models: A Solution for
Complex Physical Systems with Distinct Functional Regimes [0.0]
We propose a novel competitive learning approach for obtaining data-driven models of physical systems.
The primary idea behind the proposed approach is to employ dynamic loss functions for a set of models that are trained concurrently on the data.
arXiv Detail & Related papers (2023-07-19T23:29:40Z) - NEVIS'22: A Stream of 100 Tasks Sampled from 30 Years of Computer Vision
Research [96.53307645791179]
We introduce the Never-Ending VIsual-classification Stream (NEVIS'22), a benchmark consisting of a stream of over 100 visual classification tasks.
Despite being limited to classification, the resulting stream has a rich diversity of tasks from OCR, to texture analysis, scene recognition, and so forth.
Overall, NEVIS'22 poses an unprecedented challenge for current sequential learning approaches due to the scale and diversity of tasks.
arXiv Detail & Related papers (2022-11-15T18:57:46Z) - Enhancing Digital Health Services: A Machine Learning Approach to
Personalized Exercise Goal Setting [8.146832452474777]
This study aims to develop a machine learning algorithm that dynamically updates auto-suggestion exercise goals using retrospective data and realistic behavior trajectory.
The deep reinforcement learning algorithm combines deep learning techniques to analyse time series data and infer user exercise behavior.
arXiv Detail & Related papers (2022-04-03T01:19:20Z) - An Empirical Study of Finding Similar Exercises [0.0]
We release a Chinese education pre-trained language model BERT$_Edu$ for the label-scarce dataset.
We propose a very effective MoE enhanced multi-task model for FSE task to attain better understanding of exercises.
arXiv Detail & Related papers (2021-11-16T09:39:14Z) - Exploring Memorization in Adversarial Training [58.38336773082818]
We investigate the memorization effect in adversarial training (AT) for promoting a deeper understanding of capacity, convergence, generalization, and especially robust overfitting.
We propose a new mitigation algorithm motivated by detailed memorization analyses.
arXiv Detail & Related papers (2021-06-03T05:39:57Z) - Learning Neural Network Subspaces [74.44457651546728]
Recent observations have advanced our understanding of the neural network optimization landscape.
With a similar computational cost as training one model, we learn lines, curves, and simplexes of high-accuracy neural networks.
With a similar computational cost as training one model, we learn lines, curves, and simplexes of high-accuracy neural networks.
arXiv Detail & Related papers (2021-02-20T23:26:58Z) - Automatic Recall Machines: Internal Replay, Continual Learning and the
Brain [104.38824285741248]
Replay in neural networks involves training on sequential data with memorized samples, which counteracts forgetting of previous behavior caused by non-stationarity.
We present a method where these auxiliary samples are generated on the fly, given only the model that is being trained for the assessed objective.
Instead the implicit memory of learned samples within the assessed model itself is exploited.
arXiv Detail & Related papers (2020-06-22T15:07:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.