A Competitive Learning Approach for Specialized Models: A Solution for
Complex Physical Systems with Distinct Functional Regimes
- URL: http://arxiv.org/abs/2307.10496v2
- Date: Fri, 21 Jul 2023 17:34:51 GMT
- Title: A Competitive Learning Approach for Specialized Models: A Solution for
Complex Physical Systems with Distinct Functional Regimes
- Authors: Okezzi F. Ukorigho and Opeoluwa Owoyele
- Abstract summary: We propose a novel competitive learning approach for obtaining data-driven models of physical systems.
The primary idea behind the proposed approach is to employ dynamic loss functions for a set of models that are trained concurrently on the data.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Complex systems in science and engineering sometimes exhibit behavior that
changes across different regimes. Traditional global models struggle to capture
the full range of this complex behavior, limiting their ability to accurately
represent the system. In response to this challenge, we propose a novel
competitive learning approach for obtaining data-driven models of physical
systems. The primary idea behind the proposed approach is to employ dynamic
loss functions for a set of models that are trained concurrently on the data.
Each model competes for each observation during training, allowing for the
identification of distinct functional regimes within the dataset. To
demonstrate the effectiveness of the learning approach, we coupled it with
various regression methods that employ gradient-based optimizers for training.
The proposed approach was tested on various problems involving model discovery
and function approximation, demonstrating its ability to successfully identify
functional regimes, discover true governing equations, and reduce test errors.
Related papers
- A Mathematical Model of the Hidden Feedback Loop Effect in Machine Learning Systems [44.99833362998488]
We introduce a repeated learning process to jointly describe several phenomena attributed to unintended hidden feedback loops.
A distinctive feature of such repeated learning setting is that the state of the environment becomes causally dependent on the learner itself over time.
We present a novel dynamical systems model of the repeated learning process and prove the limiting set of probability distributions for positive and negative feedback loop modes.
arXiv Detail & Related papers (2024-05-04T17:57:24Z) - Learning Latent Dynamics via Invariant Decomposition and
(Spatio-)Temporal Transformers [0.6767885381740952]
We propose a method for learning dynamical systems from high-dimensional empirical data.
We focus on the setting in which data are available from multiple different instances of a system.
We study behaviour through simple theoretical analyses and extensive experiments on synthetic and real-world datasets.
arXiv Detail & Related papers (2023-06-21T07:52:07Z) - Self-Supervised Reinforcement Learning that Transfers using Random
Features [41.00256493388967]
We propose a self-supervised reinforcement learning method that enables the transfer of behaviors across tasks with different rewards.
Our method is self-supervised in that it can be trained on offline datasets without reward labels, but can then be quickly deployed on new tasks.
arXiv Detail & Related papers (2023-05-26T20:37:06Z) - Interactive System-wise Anomaly Detection [66.3766756452743]
Anomaly detection plays a fundamental role in various applications.
It is challenging for existing methods to handle the scenarios where the instances are systems whose characteristics are not readily observed as data.
We develop an end-to-end approach which includes an encoder-decoder module that learns system embeddings.
arXiv Detail & Related papers (2023-04-21T02:20:24Z) - Toward Physically Plausible Data-Driven Models: A Novel Neural Network
Approach to Symbolic Regression [2.7071541526963805]
This paper proposes a novel neural network-based symbolic regression method.
It constructs physically plausible models based on even very small training data sets and prior knowledge about the system.
We experimentally evaluate the approach on four test systems: the TurtleBot 2 mobile robot, the magnetic manipulation system, the equivalent resistance of two resistors in parallel, and the longitudinal force of the anti-lock braking system.
arXiv Detail & Related papers (2023-02-01T22:05:04Z) - Experimental study of Neural ODE training with adaptive solver for
dynamical systems modeling [72.84259710412293]
Some ODE solvers called adaptive can adapt their evaluation strategy depending on the complexity of the problem at hand.
This paper describes a simple set of experiments to show why adaptive solvers cannot be seamlessly leveraged as a black-box for dynamical systems modelling.
arXiv Detail & Related papers (2022-11-13T17:48:04Z) - Multi-model Ensemble Learning Method for Human Expression Recognition [31.76775306959038]
We propose our solution based on the ensemble learning method to capture large amounts of real-life data.
We conduct many experiments on the AffWild2 dataset of the ABAW2022 Challenge, and the results demonstrate the effectiveness of our solution.
arXiv Detail & Related papers (2022-03-28T03:15:06Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - Learning continuous models for continuous physics [94.42705784823997]
We develop a test based on numerical analysis theory to validate machine learning models for science and engineering applications.
Our results illustrate how principled numerical analysis methods can be coupled with existing ML training/testing methodologies to validate models for science and engineering applications.
arXiv Detail & Related papers (2022-02-17T07:56:46Z) - Meta-learning One-class Classifiers with Eigenvalue Solvers for
Supervised Anomaly Detection [55.888835686183995]
We propose a neural network-based meta-learning method for supervised anomaly detection.
We experimentally demonstrate that the proposed method achieves better performance than existing anomaly detection and few-shot learning methods.
arXiv Detail & Related papers (2021-03-01T01:43:04Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
We consider the problem of data-assisted forecasting of chaotic dynamical systems when the available data is noisy partial measurements.
We show that by using partial measurements of the state of the dynamical system, we can train a machine learning model to improve predictions made by an imperfect knowledge-based model.
arXiv Detail & Related papers (2021-02-15T19:56:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.