論文の概要: Advancing Medical Radiograph Representation Learning: A Hybrid Pre-training Paradigm with Multilevel Semantic Granularity
- arxiv url: http://arxiv.org/abs/2410.00448v1
- Date: Tue, 1 Oct 2024 07:05:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-05 05:36:46.215205
- Title: Advancing Medical Radiograph Representation Learning: A Hybrid Pre-training Paradigm with Multilevel Semantic Granularity
- Title(参考訳): 医用ラジオグラフィ表現学習の高度化:多レベルセマンティックな粒度を持つハイブリッド事前学習パラダイム
- Authors: Hanqi Jiang, Xixuan Hao, Yuzhou Huang, Chong Ma, Jiaxun Zhang, Yi Pan, Ruimao Zhang,
- Abstract要約: 本稿では,グローバルレベルの視覚表現と印象とトークンレベルの視覚表現とを一致させるHybridMEDフレームワークを提案する。
本フレームワークでは,画像から印象を生成するための2つのプロキシタスクを,キャプションブランチを介して生成する生成デコーダと,(2)要約ブランチを介して解析を行う。
MIMIC-CXRデータセットの実験により,我々の要約部は,キャプション部に対する知識を効果的に蒸留し,パラメータ要求を大幅に増大させることなくモデル性能を向上させることを明らかにした。
- 参考スコア(独自算出の注目度): 14.223539927549782
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces an innovative approach to Medical Vision-Language Pre-training (Med-VLP) area in the specialized context of radiograph representation learning. While conventional methods frequently merge textual annotations into unified reports, we acknowledge the intrinsic hierarchical relationship between the findings and impression section in radiograph datasets. To establish a targeted correspondence between images and texts, we propose a novel HybridMED framework to align global-level visual representations with impression and token-level visual representations with findings. Moreover, our framework incorporates a generation decoder that employs two proxy tasks, responsible for generating the impression from (1) images, via a captioning branch, and (2) findings, through a summarization branch. Additionally, knowledge distillation is leveraged to facilitate the training process. Experiments on the MIMIC-CXR dataset reveal that our summarization branch effectively distills knowledge to the captioning branch, enhancing model performance without significantly increasing parameter requirements due to the shared self-attention and feed-forward architecture.
- Abstract(参考訳): 本稿では,医用ビジョン・ランゲージ・プレトレーニング(Med-VLP)分野におけるラジオグラフィー表現学習の専門的文脈における革新的アプローチを紹介する。
従来の手法では,テキストアノテーションを統一的なレポートにマージすることが多いが,本研究では,解析結果と印象区間の内在的階層的関係を認めている。
画像とテキストのターゲット対応を確立するために,グローバルレベルの視覚表現と印象とトークンレベルの視覚表現とを一致させるHybridMEDフレームワークを提案する。
さらに,本フレームワークでは,(1)画像からの印象を生成するための2つのプロキシタスクを,(1)キャプションブランチ,(2)要約ブランチを介して生成する生成デコーダを組み込んだ。
さらに、知識蒸留を利用してトレーニングプロセスを促進する。
MIMIC-CXRデータセットを用いた実験により,我々の要約部はキャプティング部に対する知識を効果的に蒸留し,共有自己注意とフィードフォワードアーキテクチャによるパラメータ要求を大幅に増大させることなく,モデル性能を向上させることがわかった。
関連論文リスト
- Learning Generalized Medical Image Representations through Image-Graph Contrastive Pretraining [11.520404630575749]
胸部X線と構造化レポート知識グラフを組み合わせた画像グラフコントラスト学習フレームワークを開発した。
提案手法は,リレーショナルグラフ畳み込みネットワークとトランスフォーマーアテンションを介して,非連結グラフ成分を一意に符号化する。
論文 参考訳(メタデータ) (2024-05-15T12:27:38Z) - SERPENT-VLM : Self-Refining Radiology Report Generation Using Vision Language Models [9.390882250428305]
放射線学報告生成(R2Gen)は、マルチモーダル大言語モデル(MLLM)が正確で一貫性のある放射線学レポートの作成をいかに自動化できるかを示す。
既存の方法は、しばしば画像内容を正確に反映しないテキストベースのレポートで詳細を幻覚させる。
本稿では,自己修復機構をMLLMフレームワークに統合することにより,R2Genタスクを改善する新しい戦略を提案する。
論文 参考訳(メタデータ) (2024-04-27T13:46:23Z) - Anatomical Structure-Guided Medical Vision-Language Pre-training [21.68719061251635]
医用視覚表現を学習するための解剖学的構造ガイド(ASG)フレームワークを提案する。
解剖学的領域に対しては,放射線技師と協調して自動解剖学的領域文アライメントパラダイムを設計する。
画像の特徴を各サンプル内の各タグに関連付けるために,画像タグ認識デコーダを適用して画像タグとみなす。
論文 参考訳(メタデータ) (2024-03-14T11:29:47Z) - MLIP: Enhancing Medical Visual Representation with Divergence Encoder
and Knowledge-guided Contrastive Learning [48.97640824497327]
本稿では、画像テキストのコントラスト学習を通じて、言語情報を視覚領域に統合するための案内信号として、ドメイン固有の医療知識を活用する新しいフレームワークを提案する。
我々のモデルには、設計した分散エンコーダによるグローバルコントラスト学習、局所トークン・知識・パッチアライメントコントラスト学習、知識誘導型カテゴリレベルのコントラスト学習、エキスパートナレッジによるコントラスト学習が含まれる。
特に、MLIPは、限られた注釈付きデータであっても最先端の手法を超越し、医療表現学習の進歩におけるマルチモーダル事前学習の可能性を強調している。
論文 参考訳(メタデータ) (2024-02-03T05:48:50Z) - Unify, Align and Refine: Multi-Level Semantic Alignment for Radiology
Report Generation [48.723504098917324]
マルチレベル・クロスモーダルアライメントを学習するためのUnify, Align, then Refine (UAR)アプローチを提案する。
本稿では,Latent Space Unifier,Cross-modal Representation Aligner,Text-to-Image Refinerの3つの新しいモジュールを紹介する。
IU-XrayおよびMIMIC-CXRベンチマークデータセットの実験と解析は、UARの様々な最先端手法に対する優位性を実証している。
論文 参考訳(メタデータ) (2023-03-28T12:42:12Z) - Multi-Granularity Cross-modal Alignment for Generalized Medical Visual
Representation Learning [24.215619918283462]
本報告では, 医用画像の表現を直接学習するための新しい枠組みについて述べる。
本フレームワークは,医用画像と放射線学レポートの自然に現れる意味的対応を3段階に分けて活用する。
論文 参考訳(メタデータ) (2022-10-12T09:31:39Z) - Cross-modal Memory Networks for Radiology Report Generation [30.13916304931662]
ラジオロジーレポート生成のためのエンコーダデコーダフレームワークを強化するために,クロスモーダルメモリネットワーク(CMN)を提案する。
本モデルでは,放射線画像やテキストからの情報の整合性が向上し,臨床指標の精度向上に寄与する。
論文 参考訳(メタデータ) (2022-04-28T02:32:53Z) - CRIS: CLIP-Driven Referring Image Segmentation [71.56466057776086]
エンドツーエンドのCLIP駆動参照画像フレームワーク(CRIS)を提案する。
CRISは、テキストとピクセルのアライメントを達成するために、視覚言語によるデコーディングとコントラスト学習に頼っている。
提案するフレームワークは, 後処理を伴わずに, 最先端の性能を著しく向上させる。
論文 参考訳(メタデータ) (2021-11-30T07:29:08Z) - Improving Generation and Evaluation of Visual Stories via Semantic
Consistency [72.00815192668193]
一連の自然言語キャプションが与えられた場合、エージェントはキャプションに対応する一連の画像を生成する必要がある。
それまでの作業では、このタスクで合成テキスト・画像モデルより優れた繰り返し生成モデルを導入してきた。
従来のモデリング手法には、デュアルラーニングフレームワークの追加など、いくつかの改善点を提示する。
論文 参考訳(メタデータ) (2021-05-20T20:42:42Z) - Consensus-Aware Visual-Semantic Embedding for Image-Text Matching [69.34076386926984]
画像テキストマッチングは、視覚と言語をブリッジする上で中心的な役割を果たす。
既存のアプローチのほとんどは、表現を学ぶためにイメージテキストインスタンスペアのみに依存しています。
コンセンサスを意識したビジュアル・セマンティック・エンベディングモデルを提案し,コンセンサス情報を組み込む。
論文 参考訳(メタデータ) (2020-07-17T10:22:57Z) - Improving Image Captioning with Better Use of Captions [65.39641077768488]
本稿では,画像表現とキャプション生成の両方を強化するために,キャプションで利用可能なセマンティクスをよりよく探求するための新しい画像キャプションアーキテクチャを提案する。
我々のモデルはまず,弱教師付きマルチインスタンス学習を用いて,有益な帰納バイアスをもたらすキャプション誘導型視覚関係グラフを構築した。
生成期間中、このモデルは、単語とオブジェクト/述語タグのシーケンスを共同で予測するために、マルチタスク学習を用いた視覚関係をさらに取り入れる。
論文 参考訳(メタデータ) (2020-06-21T14:10:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。