論文の概要: Design and Identification of Keypoint Patches in Unstructured Environments
- arxiv url: http://arxiv.org/abs/2410.00521v1
- Date: Tue, 1 Oct 2024 09:05:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-05 05:07:10.036741
- Title: Design and Identification of Keypoint Patches in Unstructured Environments
- Title(参考訳): 非構造環境におけるキーポイントパッチの設計と同定
- Authors: Taewook Park, Seunghwan Kim, Hyondong Oh,
- Abstract要約: 画像内のキーポイント識別は、生画像から2D座標への直接マッピングを可能にする。
様々なスケール,回転,カメラ投影を考慮した,単純な4つの異なる設計を提案する。
様々な画像劣化条件下でのロバスト検出を確保するために,スーパーポイントネットワークをカスタマイズする。
- 参考スコア(独自算出の注目度): 7.940068522906917
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reliable perception of targets is crucial for the stable operation of autonomous robots. A widely preferred method is keypoint identification in an image, as it allows direct mapping from raw images to 2D coordinates, facilitating integration with other algorithms like localization and path planning. In this study, we closely examine the design and identification of keypoint patches in cluttered environments, where factors such as blur and shadows can hinder detection. We propose four simple yet distinct designs that consider various scale, rotation and camera projection using a limited number of pixels. Additionally, we customize the Superpoint network to ensure robust detection under various types of image degradation. The effectiveness of our approach is demonstrated through real-world video tests, highlighting potential for vision-based autonomous systems.
- Abstract(参考訳): 自律ロボットの安定動作には,目標に対する信頼性の高い認識が不可欠である。
生画像から2D座標への直接マッピングを可能にし、ローカライゼーションやパス計画といった他のアルゴリズムとの統合を容易にするため、画像内のキーポイント識別が広く好まれている。
本研究では,ぼやけた環境におけるキーポイントパッチの設計と識別について詳しく検討した。
限られた画素数を用いて, 様々なスケール, 回転, カメラ投影を考慮した, 単純かつ独特な4つの設計を提案する。
さらにスーパーポイントネットワークをカスタマイズして,様々な画像劣化によるロバスト検出を実現する。
提案手法の有効性は実世界のビデオテストを通じて実証され,視覚に基づく自律システムの可能性を強調している。
関連論文リスト
- Differentiable Registration of Images and LiDAR Point Clouds with
VoxelPoint-to-Pixel Matching [58.10418136917358]
カメラからの2D画像とLiDARからの3Dポイントクラウドの間のクロスモダリティ登録は、コンピュータビジョンとロボットトレーニングにおいて重要な課題である。
ニューラルネットワークで学習した点パターンと画素パターンのマッチングによる2次元3次元対応の推定
我々は、異なる潜在画素空間を介して3次元特徴を表現するために、構造化されたモダリティマッチングソルバを学習する。
論文 参考訳(メタデータ) (2023-12-07T05:46:10Z) - LCPR: A Multi-Scale Attention-Based LiDAR-Camera Fusion Network for
Place Recognition [11.206532393178385]
本稿では,マルチモーダル位置認識のための新しいニューラルネットワークLCPRを提案する。
位置認識性能を向上させるために,マルチビューカメラとLiDARデータを効果的に利用することができる。
論文 参考訳(メタデータ) (2023-11-06T15:39:48Z) - ZoomNeXt: A Unified Collaborative Pyramid Network for Camouflaged Object Detection [70.11264880907652]
最近のオブジェクト(COD)は、現実のシナリオでは極めて複雑で難しい、視覚的にブレンドされたオブジェクトを周囲に分割しようと試みている。
本研究では,不明瞭な画像を観察したり,ズームインしたりアウトしたりする際の人間の行動を模倣する,効果的な統合協調ピラミッドネットワークを提案する。
我々のフレームワークは、画像とビデオのCODベンチマークにおいて、既存の最先端の手法を一貫して上回っている。
論文 参考訳(メタデータ) (2023-10-31T06:11:23Z) - Towards Generalizable Multi-Camera 3D Object Detection via Perspective
Debiasing [28.874014617259935]
マルチカメラ3Dオブジェクト検出(MC3D-Det)は,鳥眼ビュー(BEV)の出現によって注目されている。
本研究では,3次元検出と2次元カメラ平面との整合性を両立させ,一貫した高精度な検出を実現する手法を提案する。
論文 参考訳(メタデータ) (2023-10-17T15:31:28Z) - View Consistent Purification for Accurate Cross-View Localization [59.48131378244399]
本稿では,屋外ロボットのための微細な自己局在化手法を提案する。
提案手法は,既存のクロスビューローカライゼーション手法の限界に対処する。
これは、動的環境における知覚を増強する初めての疎視のみの手法である。
論文 参考訳(メタデータ) (2023-08-16T02:51:52Z) - COMICS: End-to-end Bi-grained Contrastive Learning for Multi-face Forgery Detection [56.7599217711363]
顔偽造認識法は一度に1つの顔しか処理できない。
ほとんどの顔偽造認識法は一度に1つの顔しか処理できない。
マルチフェイスフォージェリ検出のためのエンドツーエンドフレームワークであるCOMICSを提案する。
論文 参考訳(メタデータ) (2023-08-03T03:37:13Z) - Self-supervised Interest Point Detection and Description for Fisheye and
Perspective Images [7.451395029642832]
キーポイント検出とマッチングは多くのコンピュータビジョンにおける基本的な課題である。
本研究では,画像取得に使用されるカメラの形状が原因で発生する場合に焦点をあてる。
我々は最先端のアプローチを構築し、関心点検出器と記述子ネットワークのトレーニングを可能にする自己監督的な手順を導出する。
論文 参考訳(メタデータ) (2023-06-02T22:39:33Z) - Self-Supervised Equivariant Learning for Oriented Keypoint Detection [35.94215211409985]
我々は、回転同変CNNを用いた自己教師付き学習フレームワークを導入し、ロバスト指向キーポイントの検出を学習する。
ヒストグラムに基づく配向マップのトレーニングのために,合成変換により生成した画像対による高密度配向損失を提案する。
提案手法は,画像マッチングベンチマークとカメラポーズ推定ベンチマークにおいて,従来の手法よりも優れていた。
論文 参考訳(メタデータ) (2022-04-19T02:26:07Z) - Weakly Supervised Keypoint Discovery [27.750244813890262]
画像レベルの監視を用いた2次元画像からのキーポイント発見手法を提案する。
本手法は,弱い教師付き学習アプローチに動機付けられ,画像レベルの監視を利用して識別部品を識別する。
本手法は,限られた監督シナリオにおけるキーポイント推定タスクの最先端性能を実現する。
論文 参考訳(メタデータ) (2021-09-28T01:26:53Z) - P2-Net: Joint Description and Detection of Local Features for Pixel and
Point Matching [78.18641868402901]
この研究は、2D画像と3D点雲の微粒な対応を確立するための取り組みである。
画素領域と点領域の固有情報変動を緩和するために,新しい損失関数と組み合わせた超広帯域受信機構を設計した。
論文 参考訳(メタデータ) (2021-03-01T14:59:40Z) - Every Pixel Matters: Center-aware Feature Alignment for Domain Adaptive
Object Detector [95.51517606475376]
ドメイン適応オブジェクト検出器は、オブジェクトの外観、視点、背景のバリエーションを含む可能性のある、見えないドメインに適応することを目的としている。
本稿では,画素単位の目的性と中心性を予測することにより,各画素を考慮に入れたドメイン適応フレームワークを提案する。
論文 参考訳(メタデータ) (2020-08-19T17:57:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。