論文の概要: Self-supervised Interest Point Detection and Description for Fisheye and
Perspective Images
- arxiv url: http://arxiv.org/abs/2306.01938v1
- Date: Fri, 2 Jun 2023 22:39:33 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-06 21:24:35.784965
- Title: Self-supervised Interest Point Detection and Description for Fisheye and
Perspective Images
- Title(参考訳): 魚眼・視線画像の自己監督的関心点検出と記述
- Authors: Marcela Mera-Trujillo, Shivang Patel, Yu Gu, Gianfranco Doretto
- Abstract要約: キーポイント検出とマッチングは多くのコンピュータビジョンにおける基本的な課題である。
本研究では,画像取得に使用されるカメラの形状が原因で発生する場合に焦点をあてる。
我々は最先端のアプローチを構築し、関心点検出器と記述子ネットワークのトレーニングを可能にする自己監督的な手順を導出する。
- 参考スコア(独自算出の注目度): 7.451395029642832
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Keypoint detection and matching is a fundamental task in many computer vision
problems, from shape reconstruction, to structure from motion, to AR/VR
applications and robotics. It is a well-studied problem with remarkable
successes such as SIFT, and more recent deep learning approaches. While great
robustness is exhibited by these techniques with respect to noise, illumination
variation, and rigid motion transformations, less attention has been placed on
image distortion sensitivity. In this work, we focus on the case when this is
caused by the geometry of the cameras used for image acquisition, and consider
the keypoint detection and matching problem between the hybrid scenario of a
fisheye and a projective image. We build on a state-of-the-art approach and
derive a self-supervised procedure that enables training an interest point
detector and descriptor network. We also collected two new datasets for
additional training and testing in this unexplored scenario, and we demonstrate
that current approaches are suboptimal because they are designed to work in
traditional projective conditions, while the proposed approach turns out to be
the most effective.
- Abstract(参考訳): キーポイント検出とマッチングは、形状再構成から動きから構造、AR/VRアプリケーション、ロボット工学に至るまで、多くのコンピュータビジョンにおける基本的なタスクである。
SIFTのような目覚ましい成功や、より最近のディープラーニングアプローチでよく研究されている問題である。
ノイズ, 照明変化, 剛性変形などにおいて, 強い頑健性が示されているが, 画像の歪み感度にはあまり注意が払われていない。
本研究では,画像取得に使用するカメラの形状が原因である場合に注目し,魚眼と投影像のハイブリッドシナリオにおけるキーポイント検出とマッチングの問題を検討する。
我々は最先端のアプローチを構築し,関心点検出器とディスクリプタネットワークのトレーニングを可能にする自己監督手順を導出する。
また、この未検討のシナリオで追加のトレーニングとテストのために2つの新しいデータセットを収集し、従来の投影的条件で動作するように設計されたため、現在のアプローチが最適ではないことを実証しました。
関連論文リスト
- FriendNet: Detection-Friendly Dehazing Network [24.372610892854283]
本稿では,イメージデハジングとオブジェクト検出を,ガイダンス情報とタスク駆動学習によってブリッジする効果的なアーキテクチャを提案する。
FriendNetは、高品質な認識と高い検出能力の両方を提供することを目指している。
論文 参考訳(メタデータ) (2024-03-07T12:19:04Z) - Fiducial Focus Augmentation for Facial Landmark Detection [4.433764381081446]
本稿では,モデルによる顔構造理解を高めるために,新しい画像強調手法を提案する。
我々は,Deep Canonical correlation Analysis (DCCA) に基づく損失を考慮した,シームズアーキテクチャに基づくトレーニング機構を採用している。
提案手法は,様々なベンチマークデータセットにおいて,最先端のアプローチよりも優れている。
論文 参考訳(メタデータ) (2024-02-23T01:34:00Z) - Geometric-aware Pretraining for Vision-centric 3D Object Detection [77.7979088689944]
GAPretrainと呼ばれる新しい幾何学的事前学習フレームワークを提案する。
GAPretrainは、複数の最先端検出器に柔軟に適用可能なプラグアンドプレイソリューションとして機能する。
BEVFormer法を用いて, nuScenes val の 46.2 mAP と 55.5 NDS を実現し, それぞれ 2.7 と 2.1 点を得た。
論文 参考訳(メタデータ) (2023-04-06T14:33:05Z) - Deep Learning for Event-based Vision: A Comprehensive Survey and Benchmarks [55.81577205593956]
イベントカメラはバイオインスパイアされたセンサーで、ピクセルごとの強度の変化を非同期に捉える。
深層学習(DL)はこの新興分野に導入され、その可能性のマイニングに活発な研究努力にインスピレーションを与えている。
論文 参考訳(メタデータ) (2023-02-17T14:19:28Z) - DETR4D: Direct Multi-View 3D Object Detection with Sparse Attention [50.11672196146829]
サラウンドビュー画像を用いた3次元物体検出は、自動運転にとって必須の課題である。
マルチビュー画像における3次元オブジェクト検出のためのスパースアテンションと直接特徴クエリを探索するトランスフォーマーベースのフレームワークであるDETR4Dを提案する。
論文 参考訳(メタデータ) (2022-12-15T14:18:47Z) - Adversarially-Aware Robust Object Detector [85.10894272034135]
本稿では,ロバスト検出器 (RobustDet) を提案する。
本モデルは, クリーン画像の検出能力を維持しながら, 傾きを効果的に解き, 検出堅牢性を著しく向上させる。
論文 参考訳(メタデータ) (2022-07-13T13:59:59Z) - Hybrid Optimized Deep Convolution Neural Network based Learning Model
for Object Detection [0.0]
物体の識別はコンピュータビジョンにおける最も基本的で難しい問題の1つである。
近年,ディープラーニングに基づく物体検出技術が大衆の関心を集めている。
本研究では,自律型物体検出システムを構築するために,独自のディープラーニング分類手法を用いる。
提案するフレームワークは検出精度0.9864であり、現在の技術よりも高い。
論文 参考訳(メタデータ) (2022-03-02T04:39:37Z) - Deep Image Deblurring: A Survey [165.32391279761006]
低レベルのコンピュータビジョンにおいて、デブロアリングは古典的な問題であり、ぼやけた入力画像からシャープなイメージを復元することを目的としている。
近年のディープラーニングの進歩は、この問題の解決に大きな進歩をもたらした。
論文 参考訳(メタデータ) (2022-01-26T01:31:30Z) - Geometry-aware data augmentation for monocular 3D object detection [18.67567745336633]
本稿では,自動運転システムにおける必須モジュールの一つであるモノキュラー3次元物体検出について述べる。
重要な課題は、深さ回復問題は単眼データに不備があることです。
我々は,既存の手法が,異なる幾何学的シフトが発生した場合の深さをロバストに推定できないことを明らかにするために,詳細な解析を行う。
上記の操作を,対応する4つの3D対応データ拡張手法に変換する。
論文 参考訳(メタデータ) (2021-04-12T23:12:48Z) - Optical Flow Estimation from a Single Motion-blurred Image [66.2061278123057]
画像内の動きのぼかしは、基本的なコンピュータビジョンの問題に実用的な関心を持つ可能性があります。
本研究では,単一動画像からの光流れをエンドツーエンドで推定する新しい枠組みを提案する。
論文 参考訳(メタデータ) (2021-03-04T12:45:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。