Beating the Optimal Verification of Entangled States via Collective Strategies
- URL: http://arxiv.org/abs/2410.00554v1
- Date: Tue, 1 Oct 2024 10:01:25 GMT
- Title: Beating the Optimal Verification of Entangled States via Collective Strategies
- Authors: Ye-Chao Liu, Jiangwei Shang,
- Abstract summary: In quantum information processing, the efficient characterization of entangled states poses an overwhelming challenge.
We propose a new verification scheme using collective strategies, showcasing arbitrarily high efficiency that beats the optimal verification with global measurements.
The approach consumes only a few copies of the entangled states, while ensuring the preservation of unmeasured ones, and even boosting their fidelity for any subsequent tasks.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the realm of quantum information processing, the efficient characterization of entangled states poses an overwhelming challenge, rendering the traditional methods including quantum tomography unfeasible and impractical. To tackle this problem, we propose a new verification scheme using collective strategies, showcasing arbitrarily high efficiency that beats the optimal verification with global measurements. Our collective scheme can be implemented in various experimental platforms and scalable for large systems with a linear scaling on hardware requirement, and distributed operations are allowed. More importantly, the approach consumes only a few copies of the entangled states, while ensuring the preservation of unmeasured ones, and even boosting their fidelity for any subsequent tasks. Furthermore, our protocol provides additional insight into the specific types of noise affecting the system, thereby facilitating potential targeted improvements. These advancements hold promise for a wide range of applications, offering a pathway towards more robust and efficient quantum information processing.
Related papers
- An efficient quantum state verification framework and its application to bosonic systems [0.0]
We introduce a general framework for the efficient verification of large quantum systems.
Our framework combines robust fidelity witnesses with efficient classical post-processing to implement measurement back-propagation.
arXiv Detail & Related papers (2024-11-07T13:19:22Z) - Non-Markovian Quantum Control via Model Maximum Likelihood Estimation
and Reinforcement Learning [0.0]
We propose a novel approach that incorporates the non-Markovian nature of the environment into a low-dimensional effective reservoir.
We utilize machine learning techniques to learn the effective quantum dynamics more efficiently than traditional tomographic methods.
This approach may not only mitigates the issues of model bias but also provides a more accurate representation of quantum dynamics.
arXiv Detail & Related papers (2024-02-07T18:37:17Z) - Retrieving non-linear features from noisy quantum states [11.289924445850328]
In this paper, we analyze the feasibility and efficiency of extracting high-order moments from noisy states.
We first show that there exists a quantum protocol capable of accomplishing this task if and only if the underlying noise channel is invertible.
Our work contributes to a deeper understanding of how quantum noise could affect high-order information extraction and provides guidance on how to tackle it.
arXiv Detail & Related papers (2023-09-20T15:28:18Z) - Entanglement Verification with Deep Semi-supervised Machine Learning [10.587454514254423]
We propose a deep semi-supervised learning model with a small portion of labeled data and a large portion of unlabeled data.
We verify that our model has good generalization ability and gives rise to better accuracies compared to traditional supervised learning models.
arXiv Detail & Related papers (2023-08-29T15:41:04Z) - Robust and efficient verification of graph states in blind
measurement-based quantum computation [52.70359447203418]
Blind quantum computation (BQC) is a secure quantum computation method that protects the privacy of clients.
It is crucial to verify whether the resource graph states are accurately prepared in the adversarial scenario.
Here, we propose a robust and efficient protocol for verifying arbitrary graph states with any prime local dimension.
arXiv Detail & Related papers (2023-05-18T06:24:45Z) - Quantum verification and estimation with few copies [63.669642197519934]
The verification and estimation of large entangled systems represents one of the main challenges in the employment of such systems for reliable quantum information processing.
This review article presents novel techniques focusing on a fixed number of resources (sampling complexity) and thus prove suitable for systems of arbitrary dimension.
Specifically, a probabilistic framework requiring at best only a single copy for entanglement detection is reviewed, together with the concept of selective quantum state tomography.
arXiv Detail & Related papers (2021-09-08T18:20:07Z) - Reinforcement learning-enhanced protocols for coherent
population-transfer in three-level quantum systems [50.591267188664666]
We deploy a combination of reinforcement learning-based approaches and more traditional optimization techniques to identify optimal protocols for population transfer.
Our approach is able to explore the space of possible control protocols to reveal the existence of efficient protocols.
The new protocols that we identify are robust against both energy losses and dephasing.
arXiv Detail & Related papers (2021-09-02T14:17:30Z) - Experimental multi-state quantum discrimination through a Quantum
network [63.1241529629348]
We have experimentally implemented two discrimination schemes in a minimum-error scenario based on a receiver featured by a network structure and a dynamical processing of information.
The first protocol achieves binary optimal discrimination, while the second one provides a novel approach to multi-state quantum discrimination, relying on the dynamical features of the network-like receiver.
arXiv Detail & Related papers (2021-07-21T09:26:48Z) - Efficient entanglement generation and detection of generalized
stabilizer states [3.931366810430107]
We present an efficient scheme to generate genuine multipartite entanglement of a large number of qubits by using the Heisenberg interaction.
This method can be conveniently implemented in various physical platforms, including superconducting, trapped-ion, and cold-atom systems.
arXiv Detail & Related papers (2020-12-14T14:56:50Z) - Entanglement-assisted entanglement purification [62.997667081978825]
We present a new class of entanglement-assisted entanglement purification protocols that can generate high-fidelity entanglement from noisy, finite-size ensembles.
Our protocols can deal with arbitrary errors, but are best suited for few errors, and work particularly well for decay noise.
arXiv Detail & Related papers (2020-11-13T19:00:05Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.