Beating the Optimal Verification of Entangled States via Collective Strategies
- URL: http://arxiv.org/abs/2410.00554v2
- Date: Sun, 06 Jul 2025 18:48:17 GMT
- Title: Beating the Optimal Verification of Entangled States via Collective Strategies
- Authors: Ye-Chao Liu, Jiangwei Shang,
- Abstract summary: We propose a new verification scheme, showcasing arbitrarily high efficiency that beats the optimal verification with global measurements.<n>The approach consumes only a few copies of the entangled states, while ensuring the preservation of unmeasured ones.<n>These advancements hold promise for a wide range of applications, offering a pathway towards more robust and efficient quantum information processing.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the realm of quantum information processing, the efficient characterization of entangled states poses an overwhelming challenge, rendering the traditional methods including quantum tomography unfeasible and impractical. To tackle this problem, we propose a new verification scheme using collective strategies, showcasing arbitrarily high efficiency that beats the optimal verification with global measurements. Our collective scheme can be implemented in various experimental platforms and scalable for large systems with a linear scaling on hardware requirement, and distributed operations are allowed. Notably, larger ensembles can always improve the efficiency further, but without increasing the quantum memory. More importantly, the approach consumes only a few copies of the entangled states, while ensuring the preservation of unmeasured ones, and even boosting their fidelity for any subsequent tasks. Furthermore, our protocol provides additional insight into the specific types of noise affecting the system, thereby facilitating potential targeted improvements. These advancements hold promise for a wide range of applications, offering a pathway towards more robust and efficient quantum information processing.
Related papers
- An efficient quantum state verification framework and its application to bosonic systems [0.0]
We introduce a general framework for the efficient verification of large quantum systems.
Our framework combines robust fidelity witnesses with efficient classical post-processing to implement measurement back-propagation.
arXiv Detail & Related papers (2024-11-07T13:19:22Z) - Generalized Quantum Repeater Graph States [1.7635061227370266]
We present a new approach to ensure the loss tolerance of distributing a single ebit.<n>We demonstrate that our new scheme significantly outperforms the previous work with much flexibility.<n>These findings offer new insights into the scalability and reliability of loss-tolerant quantum networks.
arXiv Detail & Related papers (2024-07-01T16:21:37Z) - Non-Markovian Quantum Control via Model Maximum Likelihood Estimation
and Reinforcement Learning [0.0]
We propose a novel approach that incorporates the non-Markovian nature of the environment into a low-dimensional effective reservoir.
We utilize machine learning techniques to learn the effective quantum dynamics more efficiently than traditional tomographic methods.
This approach may not only mitigates the issues of model bias but also provides a more accurate representation of quantum dynamics.
arXiv Detail & Related papers (2024-02-07T18:37:17Z) - QuEST: Low-bit Diffusion Model Quantization via Efficient Selective Finetuning [52.157939524815866]
In this paper, we identify imbalanced activation distributions as a primary source of quantization difficulty.<n>We propose to adjust these distributions through weight finetuning to be more quantization-friendly.<n>Our method demonstrates its efficacy across three high-resolution image generation tasks.
arXiv Detail & Related papers (2024-02-06T03:39:44Z) - Retrieving non-linear features from noisy quantum states [11.289924445850328]
In this paper, we analyze the feasibility and efficiency of extracting high-order moments from noisy states.
We first show that there exists a quantum protocol capable of accomplishing this task if and only if the underlying noise channel is invertible.
Our work contributes to a deeper understanding of how quantum noise could affect high-order information extraction and provides guidance on how to tackle it.
arXiv Detail & Related papers (2023-09-20T15:28:18Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Entanglement Verification with Deep Semi-supervised Machine Learning [10.587454514254423]
We propose a deep semi-supervised learning model with a small portion of labeled data and a large portion of unlabeled data.
We verify that our model has good generalization ability and gives rise to better accuracies compared to traditional supervised learning models.
arXiv Detail & Related papers (2023-08-29T15:41:04Z) - Robust and efficient verification of graph states in blind
measurement-based quantum computation [52.70359447203418]
Blind quantum computation (BQC) is a secure quantum computation method that protects the privacy of clients.
It is crucial to verify whether the resource graph states are accurately prepared in the adversarial scenario.
Here, we propose a robust and efficient protocol for verifying arbitrary graph states with any prime local dimension.
arXiv Detail & Related papers (2023-05-18T06:24:45Z) - Efficient algorithms for quantum information bottleneck [64.67104066707309]
We propose a new and general algorithm for the quantum generalisation of information bottleneck.
Our algorithm excels in the speed and the definiteness of convergence compared with prior results.
Notably, we discover that a quantum system can achieve strictly better performance than a classical system of the same size regarding quantum information bottleneck.
arXiv Detail & Related papers (2022-08-22T14:20:05Z) - Efficient Quantum Voting with Information-Theoretic Security [0.0]
We show that the use of quantum networks can enable information-theoretic security for the desirable aspects of a distributed voting scheme.
In our approach, ballot information is encoded in quantum states that enable an exponential reduction in communication complexity.
arXiv Detail & Related papers (2021-12-28T18:10:44Z) - Quantum verification and estimation with few copies [63.669642197519934]
The verification and estimation of large entangled systems represents one of the main challenges in the employment of such systems for reliable quantum information processing.
This review article presents novel techniques focusing on a fixed number of resources (sampling complexity) and thus prove suitable for systems of arbitrary dimension.
Specifically, a probabilistic framework requiring at best only a single copy for entanglement detection is reviewed, together with the concept of selective quantum state tomography.
arXiv Detail & Related papers (2021-09-08T18:20:07Z) - Reinforcement learning-enhanced protocols for coherent
population-transfer in three-level quantum systems [50.591267188664666]
We deploy a combination of reinforcement learning-based approaches and more traditional optimization techniques to identify optimal protocols for population transfer.
Our approach is able to explore the space of possible control protocols to reveal the existence of efficient protocols.
The new protocols that we identify are robust against both energy losses and dephasing.
arXiv Detail & Related papers (2021-09-02T14:17:30Z) - Experimental multi-state quantum discrimination through a Quantum
network [63.1241529629348]
We have experimentally implemented two discrimination schemes in a minimum-error scenario based on a receiver featured by a network structure and a dynamical processing of information.
The first protocol achieves binary optimal discrimination, while the second one provides a novel approach to multi-state quantum discrimination, relying on the dynamical features of the network-like receiver.
arXiv Detail & Related papers (2021-07-21T09:26:48Z) - Efficient verification of entangled continuous-variable quantum states
with local measurements [0.9825966924601679]
We establish a systematic framework for verifying entangled continuous-variable quantum states by employing local measurements only.
Our protocol is able to achieve the unconditionally high verification efficiency which is quadratically better than quantum tomography.
arXiv Detail & Related papers (2021-03-30T11:59:03Z) - Efficient entanglement generation and detection of generalized
stabilizer states [3.931366810430107]
We present an efficient scheme to generate genuine multipartite entanglement of a large number of qubits by using the Heisenberg interaction.
This method can be conveniently implemented in various physical platforms, including superconducting, trapped-ion, and cold-atom systems.
arXiv Detail & Related papers (2020-12-14T14:56:50Z) - Entanglement-assisted entanglement purification [62.997667081978825]
We present a new class of entanglement-assisted entanglement purification protocols that can generate high-fidelity entanglement from noisy, finite-size ensembles.
Our protocols can deal with arbitrary errors, but are best suited for few errors, and work particularly well for decay noise.
arXiv Detail & Related papers (2020-11-13T19:00:05Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.