論文の概要: Can We Remove the Ground? Obstacle-aware Point Cloud Compression for Remote Object Detection
- arxiv url: http://arxiv.org/abs/2410.00582v1
- Date: Tue, 1 Oct 2024 11:05:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-05 04:57:03.257001
- Title: Can We Remove the Ground? Obstacle-aware Point Cloud Compression for Remote Object Detection
- Title(参考訳): 地面の除去は可能か?遠隔物体検出のための障害物認識点雲圧縮
- Authors: Pengxi Zeng, Alberto Presta, Jonah Reinis, Dinesh Bharadia, Hang Qiu, Pamela Cosman,
- Abstract要約: そこで本研究では,PGR(Pillar-based Ground removal)アルゴリズムを提案する。
PGRは、オブジェクト認識にコンテキストを提供しない基底点をフィルタリングする。
重いオブジェクト検出やセマンティックセグメンテーションモデルを使用しないPGRは軽量で、高度に並列化可能で、効果的である。
- 参考スコア(独自算出の注目度): 7.745500652350134
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Efficient point cloud (PC) compression is crucial for streaming applications, such as augmented reality and cooperative perception. Classic PC compression techniques encode all the points in a frame. Tailoring compression towards perception tasks at the receiver side, we ask the question, "Can we remove the ground points during transmission without sacrificing the detection performance?" Our study reveals a strong dependency on the ground from state-of-the-art (SOTA) 3D object detection models, especially on those points below and around the object. In this work, we propose a lightweight obstacle-aware Pillar-based Ground Removal (PGR) algorithm. PGR filters out ground points that do not provide context to object recognition, significantly improving compression ratio without sacrificing the receiver side perception performance. Not using heavy object detection or semantic segmentation models, PGR is light-weight, highly parallelizable, and effective. Our evaluations on KITTI and Waymo Open Dataset show that SOTA detection models work equally well with PGR removing 20-30% of the points, with a speeding of 86 FPS.
- Abstract(参考訳): 効率的なポイントクラウド(PC)圧縮は、拡張現実や協調認識など、ストリーミングアプリケーションにとって不可欠である。
古典的なPC圧縮技術は、フレーム内のすべてのポイントを符号化する。
受信側での認識タスクに対する圧縮を調整し、「検出性能を犠牲にすることなく送信中の接地点を除去するのか?」という質問をする。
本研究は, 最先端3次元物体検出モデル(SOTA)の地上への強い依存を明らかにするものである。
本研究では, Pillar-based Ground removal (PGR) アルゴリズムを提案する。
PGRは、オブジェクト認識に文脈を提供しない基底点をフィルタし、受信側認識性能を犠牲にすることなく、圧縮率を大幅に改善する。
重いオブジェクト検出やセマンティックセグメンテーションモデルを使用しないPGRは軽量で、高度に並列化可能で、効果的である。
KITTI と Waymo Open Dataset による評価の結果,SOTA 検出モデルは PGR が 20-30% のポイントを除去し,86 FPS の高速化を実現していることがわかった。
関連論文リスト
- StraightPCF: Straight Point Cloud Filtering [50.66412286723848]
ポイントクラウドフィルタリングは、基礎となるクリーンな表面を回復しながらノイズを取り除くことを目的とした、基本的な3Dビジョンタスクである。
我々は、ポイントクラウドフィルタリングのための新しいディープラーニングベースの方法であるStraightPCFを紹介する。
ノイズの多い点を直線に沿って移動させることで、離散化誤差を低減し、クリーン表面への高速な収束を保証する。
論文 参考訳(メタデータ) (2024-05-14T05:41:59Z) - PointCompress3D: A Point Cloud Compression Framework for Roadside LiDARs in Intelligent Transportation Systems [24.783727646151583]
この研究は、ロードサイドのLiDARに特化した新しいポイントクラウド圧縮フレームワークであるPointCompress3Dを紹介した。
実世界のTUMTrafデータセットファミリを用いて,3つの最先端圧縮手法を適応し,拡張し,統合し,評価する。
大規模な実験およびアブレーション研究において、データセット上でPSNR d2の94.46とBPPの6.54を達成した。
論文 参考訳(メタデータ) (2024-05-02T21:35:45Z) - Poster: Making Edge-assisted LiDAR Perceptions Robust to Lossy Point
Cloud Compression [0.0]
損失圧縮による知覚性能損失を軽減するため,LiDAR点雲の品質を向上するアルゴリズムを提案する。
既存の画像アルゴリズムと比較して,距離画像から点雲を再構成した場合の定性的な結果が得られた。
論文 参考訳(メタデータ) (2023-09-08T18:34:48Z) - V-DETR: DETR with Vertex Relative Position Encoding for 3D Object
Detection [73.37781484123536]
DETRフレームワークを用いた点雲のための高性能な3次元物体検出器を提案する。
限界に対処するため,新しい3次元相対位置(3DV-RPE)法を提案する。
挑戦的なScanNetV2ベンチマークで例外的な結果を示す。
論文 参考訳(メタデータ) (2023-08-08T17:14:14Z) - PSA-Det3D: Pillar Set Abstraction for 3D object Detection [14.788139868324155]
我々は,小物体の検出性能を向上させるために,柱集合抽象化(PSA)と前景点補償(FPC)を提案する。
KITTI 3D 検出ベンチマーク実験の結果,提案した PSA-Det3D は他のアルゴリズムよりも高い精度で小物体検出を行うことができた。
論文 参考訳(メタデータ) (2022-10-20T03:05:34Z) - Embracing Single Stride 3D Object Detector with Sparse Transformer [63.179720817019096]
自律走行のためのLiDARを用いた3次元物体検出では、物体サイズと入力シーンサイズとの比が2次元検出の場合に比べて有意に小さい。
多くの3D検出器は2D検出器の一般的な慣習に従っており、点雲の定量化後も特徴マップを分解する。
本稿では,SST(Single-stride Sparse Transformer)を提案する。
論文 参考訳(メタデータ) (2021-12-13T02:12:02Z) - 3D-VField: Learning to Adversarially Deform Point Clouds for Robust 3D
Object Detection [111.32054128362427]
安全クリティカルな環境では、アウト・オブ・ディストリビューションとロングテールサンプルの堅牢性は、危険な問題を回避するのに不可欠である。
トレーニング中の変形点雲を考慮した3次元物体検出器の領域外データへの一般化を著しく改善する。
我々は、リアルに損傷を受けた稀な車の合成データセットであるCrashDを提案し、共有する。
論文 参考訳(メタデータ) (2021-12-09T08:50:54Z) - VPFNet: Improving 3D Object Detection with Virtual Point based LiDAR and
Stereo Data Fusion [62.24001258298076]
VPFNetは、ポイントクラウドとイメージデータを仮想のポイントで巧みに調整し集約する新しいアーキテクチャである。
当社のVPFNetは,KITTIテストセットで83.21%の中等度3D AP,91.86%中等度BEV APを達成し,2021年5月21日以来の1位となった。
論文 参考訳(メタデータ) (2021-11-29T08:51:20Z) - Progressive Coordinate Transforms for Monocular 3D Object Detection [52.00071336733109]
本稿では,学習座標表現を容易にするために,PCT(Em Progressive Coordinate Transforms)と呼ばれる,新しい軽量なアプローチを提案する。
本稿では,学習座標表現を容易にするために,PCT(Em Progressive Coordinate Transforms)と呼ばれる,新しい軽量なアプローチを提案する。
論文 参考訳(メタデータ) (2021-08-12T15:22:33Z) - DeepCompress: Efficient Point Cloud Geometry Compression [1.808877001896346]
本稿では,ポイントクラウド圧縮のためのより効率的なディープラーニングベースのエンコーダアーキテクチャを提案する。
CENIC(Efficient Neural Image Compression)から学習した活性化関数を組み込むことで,効率と性能が劇的に向上することを示す。
提案手法は,BjontegardデルタレートとPSNR値において,ベースラインアプローチよりも小さなマージンで優れていた。
論文 参考訳(メタデータ) (2021-06-02T23:18:11Z) - Multiscale Point Cloud Geometry Compression [29.605320327889142]
本稿では,3次元ポイント・クラウド・ジオメトリを階層的に再構築するマルチスケール・ツー・エンド・ラーニング・フレームワークを提案する。
このフレームワークは、ポイントクラウド圧縮と再構成のためのスパース畳み込みベースのオートエンコーダの上に開発されている。
論文 参考訳(メタデータ) (2020-11-07T16:11:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。