Quantum correlations, mixed states and bistability at the onset of lasing
- URL: http://arxiv.org/abs/2410.00588v2
- Date: Wed, 2 Oct 2024 08:29:42 GMT
- Title: Quantum correlations, mixed states and bistability at the onset of lasing
- Authors: Francesco Papoff, Mark Anthony Carroll, Gian Luca Lippi, Gian-Luca Oppo, Giampaolo D'Alessandro,
- Abstract summary: We derive a model for a single mode laser that includes all two particle quantum correlations between photons and electrons.
We find that lasing takes place in the presence of quantum bistability between a non-lasing and a non-classical coherent state.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We derive a model for a single mode laser that includes all two particle quantum correlations between photons and electrons. In contrast to the predictions of semi-classical models, we find that lasing takes place in the presence of quantum bistability between a non-lasing and a non-classical coherent state. The coherent state is characterized by a central frequency and a finite linewidth and emerges with finite amplitude from a saddle-node bifurcation together with an unstable coherent state. Hence coherent emission in nanolasers originates through a mixing of lasing and non-lasing states. In the limit of a macrolaser with a large number of emitters and non-resonant modes, the laser threshold approaches the prediction of the semi-classical theory, but with the important difference that lasing can be achieved only in the presence of finite size perturbations.
Related papers
- Electron-correlation induced nonclassicallity of light from
high-harmonic generation [0.0]
We study the effect of electron-electron correlations on the quantum state of the light emitted from high-harmonic generation (HHG)
We analytically find that the emitted light is in a classical coherent state.
In the Mott-insulating phase, a consideration of the photon statistics and squeezing of the emitted photonic state shows that the inter-Hubbard-subband current generates nonclassical light.
arXiv Detail & Related papers (2023-12-14T13:49:59Z) - Correlations and linewidth of the atomic beam continuous superradiant
laser [0.0]
A beam of atoms crosses the mode of a high-finesse FabryPerot cavity, and collectively emits light into the cavity mode.
We focus on the case of weak single atom - cavity cooperativity, and highlight the relevant regime where decoherence due to the finite transit time dominates over spontaneous emission.
arXiv Detail & Related papers (2022-10-11T14:06:39Z) - Oscillator laser model [77.34726150561087]
Diffusion coefficients, consistent with the model and necessary for solving quantum nonlinear laser equations analytically, are found.
Collective Rabi splitting peaks are predicted in the intensity fluctuation spectra of the superradiant lasers.
arXiv Detail & Related papers (2022-06-11T07:38:31Z) - Quantum density matrix theory for a laser without adiabatic elimination
of the population inversion: transition to lasing in the class-B limit [62.997667081978825]
No class-B quantum density-matrix model is available to date, capable of accurately describing coherence and photon correlations within a unified theory.
Here we carry out a density-matrix theoretical approach for generic class-B lasers, and provide closed equations for the photonic and atomic reduced density matrix in the Fock basis of photons.
This model enables the study of few-photon bifurcations and non-classical photon correlations in class-B laser devices, also leveraging quantum descriptions of coherently coupled nanolaser arrays.
arXiv Detail & Related papers (2022-05-26T16:33:51Z) - Correlated steady states and Raman lasing in continuously pumped and
probed atomic ensembles [68.8204255655161]
We consider an ensemble of Alkali atoms that are continuously optically pumped and probed.
Due to the collective scattering of photons at large optical depth, the steady state of atoms does not correspond to an uncorrelated tensor-product state.
We find and characterize regimes of Raman lasing, akin to the model of a superradiant laser.
arXiv Detail & Related papers (2022-05-10T06:54:54Z) - Non-Gaussian superradiant transition via three-body ultrastrong coupling [62.997667081978825]
We introduce a class of quantum optical Hamiltonian characterized by three-body couplings.
We propose a circuit-QED scheme based on state-of-the-art technology that implements the considered model.
arXiv Detail & Related papers (2022-04-07T15:39:21Z) - Dynamics of single-mode nonclassicalities and quantum correlations in
the Jaynes-Cummings model [0.0]
Dynamics of atom-field correlations and single-mode nonclassicalities present in the resonant Jaynes-Cummings model are investigated.
Study has revealed the interplay between three different types of nonclassicality present in the model.
arXiv Detail & Related papers (2022-03-08T14:44:06Z) - Hyper-entangling mesoscopic bound states [0.0]
We show that the post-collision state will be hyper-entangled in spatial degrees of freedom and atom number within solitons.
Results are based on simulations of colliding quantum solitons in a quintic interaction model beyond the mean-field.
arXiv Detail & Related papers (2022-02-12T18:28:43Z) - Scattering in Terms of Bohmian Conditional Wave Functions for Scenarios
with Non-Commuting Energy and Momentum Operators [0.0]
We show that Bohmian conditional wave functions (BCWF) allow a rigorous discussion of the dynamics of electrons inside open quantum systems.
We discuss the practical application of the method for modeling light-matter interaction phenomena in a resonant tunneling device.
arXiv Detail & Related papers (2022-02-03T13:07:43Z) - Non-equilibrium stationary states of quantum non-Hermitian lattice
models [68.8204255655161]
We show how generic non-Hermitian tight-binding lattice models can be realized in an unconditional, quantum-mechanically consistent manner.
We focus on the quantum steady states of such models for both fermionic and bosonic systems.
arXiv Detail & Related papers (2021-03-02T18:56:44Z) - Bose-Einstein condensate soliton qubit states for metrological
applications [58.720142291102135]
We propose novel quantum metrology applications with two soliton qubit states.
Phase space analysis, in terms of population imbalance - phase difference variables, is also performed to demonstrate macroscopic quantum self-trapping regimes.
arXiv Detail & Related papers (2020-11-26T09:05:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.