A simple yet accurate stochastic approach to the quantum phase noise of nanolasers
- URL: http://arxiv.org/abs/2412.14347v1
- Date: Wed, 18 Dec 2024 21:30:18 GMT
- Title: A simple yet accurate stochastic approach to the quantum phase noise of nanolasers
- Authors: Matias Bundgaard-Nielsen, Marco Saldutti, Benjamin Falkenberg Gøtzsche, Emil Grovn, Jesper Mørk,
- Abstract summary: A simple model for the laser quantum noise is suggested.
Linewidth changes from being dominated by photons below threshold to the wave-like nature above threshold.
- Score: 0.0
- License:
- Abstract: Nanolasers operating at low power levels are strongly affected by intrinsic quantum noise, affecting both intensity fluctuations and laser coherence. Starting from semi-classical rate equations and making a simple hypothesis for the phase of the laser field, a simple stochastic model for the laser quantum noise is suggested. The model is shown to agree quantitatively with quantum master equations for microscopic lasers with a small number of emitters and with classical Langevin equations for macroscopic systems. In contrast, neither quantum master equations nor classical Langevin equations adequately address the mesoscopic regime. The stochastic approach is used to calculate the linewidth throughout the transition to lasing, where the linewidth changes from being dominated by the particle-like nature of photons below threshold to the wave-like nature above threshold, where it is strongly influenced by index fluctuations enhancing the linewidth.
Related papers
- Quantum correlations, mixed states and bistability at the onset of lasing [0.0]
We derive a model for a single mode laser that includes all two particle quantum correlations between photons and electrons.
We find that lasing takes place in the presence of quantum bistability between a non-lasing and a non-classical coherent state.
arXiv Detail & Related papers (2024-10-01T11:18:57Z) - Quantum-like nonlinear interferometry with frequency-engineered classical light [0.0]
We present a "quantum-like" nonlinear optical method that reaches super-resolution in single-photon detection regime.
This is achieved by replacing photon-pairs by coherent states of light, mimicking quantum properties through classical nonlinear optics processes.
arXiv Detail & Related papers (2024-09-18T15:22:25Z) - Amplification of quantum transfer and quantum ratchet [56.47577824219207]
We study a model of amplification of quantum transfer and making it directed which we call the quantum ratchet model.
The ratchet effect is achieved in the quantum control model with dissipation and sink, where the Hamiltonian depends on vibrations in the energy difference synchronized with transitions between energy levels.
Amplitude and frequency of the oscillating vibron together with the dephasing rate are the parameters of the quantum ratchet which determine its efficiency.
arXiv Detail & Related papers (2023-12-31T14:04:43Z) - A stochastic approach to the quantum noise of a single-emitter nanolaser [0.0]
intensity quantum noise of a single-emitter nanolaser can be accurately computed.
Model is validated by comparison to full quantum simulations.
Results provide insight into the fundamental nature of quantum noise in lasers.
arXiv Detail & Related papers (2023-01-27T16:10:33Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Nonclassical light generation and control from laser-driven
semiconductor intraband excitations [0.0]
We investigate the generation of higher-order harmonics from a quantum optics perspective.
We find intricate but sufficiently mild modifications of the fundamental mode and coherent displacements.
Similar to high-harmonic generation in atoms, all radiation field modes are entangled, allowing for potential novel protocols for quantum information processing.
arXiv Detail & Related papers (2022-11-11T12:59:15Z) - Phase Randomness in a Semiconductor Laser: the Issue of Quantum Random
Number Generation [83.48996461770017]
This paper describes theoretical and experimental methods for estimating the degree of phase randomization in a gain-switched laser.
We show that the interference signal remains quantum in nature even in the presence of classical phase drift in the interferometer.
arXiv Detail & Related papers (2022-09-20T14:07:39Z) - Perturbation approach in Heisenberg equations for lasers [77.34726150561087]
It is found that fluctuations of population significantly affect spontaneous and stimulated emissions into the lasing mode.
The method can be applied to various resonant systems in quantum optics.
arXiv Detail & Related papers (2022-01-08T18:24:37Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.