論文の概要: LASMP: Language Aided Subset Sampling Based Motion Planner
- arxiv url: http://arxiv.org/abs/2410.00649v1
- Date: Tue, 1 Oct 2024 13:03:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-05 04:35:05.184803
- Title: LASMP: Language Aided Subset Sampling Based Motion Planner
- Title(参考訳): LASMP: 言語支援サブセットサンプリングベースのモーションプランナ
- Authors: Saswati Bhattacharjee, Anirban Sinha, Chinwe Ekenna,
- Abstract要約: Language Aided Subset Sampling Based Motion Planner (LASMP)は、自然言語による動作計画を支援する。
LASMPはRapidly Exploring Random Tree (RRT) メソッドの修正版を使用している。
従来のRT法と比較して、LASMPは必要なノード数を55%削減し、ランダムなサンプルクエリを80%削減し、安全で衝突のないパスを生成する。
- 参考スコア(独自算出の注目度): 2.2120851074630177
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents the Language Aided Subset Sampling Based Motion Planner (LASMP), a system that helps mobile robots plan their movements by using natural language instructions. LASMP uses a modified version of the Rapidly Exploring Random Tree (RRT) method, which is guided by user-provided commands processed through a language model (RoBERTa). The system improves efficiency by focusing on specific areas of the robot's workspace based on these instructions, making it faster and less resource-intensive. Compared to traditional RRT methods, LASMP reduces the number of nodes needed by 55% and cuts random sample queries by 80%, while still generating safe, collision-free paths. Tested in both simulated and real-world environments, LASMP has shown better performance in handling complex indoor scenarios. The results highlight the potential of combining language processing with motion planning to make robot navigation more efficient.
- Abstract(参考訳): 本稿では,自然言語による移動ロボットの動作計画を支援するLanguage Aided Subset Sampling Based Motion Planner (LASMP)を提案する。
LASMPはRapidly Exploring Random Tree (RRT) メソッドの修正版を使用している。
このシステムは、これらの指示に基づいてロボットのワークスペースの特定の領域に焦点をあてることで効率を向上し、より高速でリソース集約の少ないシステムである。
従来のRT法と比較して、LASMPは必要なノード数を55%削減し、ランダムなサンプルクエリを80%削減し、安全で衝突のないパスを生成する。
シミュレーションと実環境の両方でテストされたLASMPは、複雑な屋内シナリオを扱う上で、より良いパフォーマンスを示している。
その結果、ロボットナビゲーションをより効率的にするために、言語処理とモーションプランニングを組み合わせる可能性を浮き彫りにした。
関連論文リスト
- DeeR-VLA: Dynamic Inference of Multimodal Large Language Models for Efficient Robot Execution [114.61347672265076]
実世界のロボットのためのMLLMの開発は、ロボットプラットフォームで利用可能な計算能力とメモリ容量が典型的に限られているため、難しい。
活性化MLLMのサイズを自動的に調整するロボットビジョンランゲージ・アクション・モデル(DeeR)の動的早期実行フレームワークを提案する。
DeeR は LLM の計算コストを 5.2-6.5x に削減し、GPU のメモリを 2-6x に削減した。
論文 参考訳(メタデータ) (2024-11-04T18:26:08Z) - Natural Language as Policies: Reasoning for Coordinate-Level Embodied Control with LLMs [7.746160514029531]
ロボットのタスク計画問題に対処するLLMによる実験結果を示す。
提案手法はタスクとシーンオブジェクトのテキスト記述を取得し,自然言語推論によるタスクプランニングを定式化する。
提案手法はマルチモーダル・プロンプト・シミュレーション・ベンチマークを用いて評価する。
論文 参考訳(メタデータ) (2024-03-20T17:58:12Z) - Probabilistically Correct Language-based Multi-Robot Planning using Conformal Prediction [11.614036749291216]
本稿では,S-ATLAS for Safe plAnning for Teams of Language-instructed Agentsを提案する。
提案したプランナは,計画実行が成功すると仮定して,ユーザ指定のタスク成功率を達成可能であることを示す。
我々は,本手法が計算効率が高く,ヘルプレートが低いことを示す関連研究との比較実験を行った。
論文 参考訳(メタデータ) (2024-02-23T15:02:44Z) - RoboScript: Code Generation for Free-Form Manipulation Tasks across Real
and Simulation [77.41969287400977]
本稿では,コード生成を利用したデプロイ可能なロボット操作パイプラインのためのプラットフォームである textbfRobotScript を提案する。
自由形自然言語におけるロボット操作タスクのためのコード生成ベンチマークも提案する。
我々は,Franka と UR5 のロボットアームを含む,複数のロボットエボディメントにまたがるコード生成フレームワークの適応性を実証した。
論文 参考訳(メタデータ) (2024-02-22T15:12:00Z) - Interactive Planning Using Large Language Models for Partially
Observable Robotics Tasks [54.60571399091711]
大きな言語モデル(LLM)は、オープン語彙タスクを実行するロボットエージェントを作成することで、驚くべき成果を上げている。
LLMを用いた部分的に観測可能なタスクのための対話型計画手法を提案する。
論文 参考訳(メタデータ) (2023-12-11T22:54:44Z) - Large Language Models as General Pattern Machines [64.75501424160748]
我々は,事前訓練された大規模言語モデル (LLM) が,複雑なトークンシーケンスを自動回帰的に完了することを示す。
驚いたことに、語彙からランダムにサンプリングされたトークンを用いてシーケンスが表現された場合でも、パターン完了の習熟度を部分的に保持することができる。
本研究では,ロボット工学における問題に対して,これらのゼロショット機能がどのように適用されるかを検討する。
論文 参考訳(メタデータ) (2023-07-10T17:32:13Z) - AutoTAMP: Autoregressive Task and Motion Planning with LLMs as Translators and Checkers [20.857692296678632]
人間とロボットの効果的なインタラクションには、ロボットは複雑な長期的タスクを理解し、計画し、実行する必要がある。
大規模言語モデルの最近の進歩は、自然言語をロボットのアクションシーケンスに変換することを約束している。
本研究では,複雑なタスク領域において,LLMをプランナとして用いる手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-06-10T21:58:29Z) - Instruct2Act: Mapping Multi-modality Instructions to Robotic Actions
with Large Language Model [63.66204449776262]
Instruct2Actは、ロボット操作タスクのシーケンシャルアクションにマルチモーダル命令をマッピングするフレームワークである。
我々のアプローチは、様々な命令のモダリティや入力タイプを調節する上で、調整可能で柔軟なものである。
我々のゼロショット法は、いくつかのタスクにおいて、最先端の学習ベースのポリシーよりも優れていた。
論文 参考訳(メタデータ) (2023-05-18T17:59:49Z) - A Survey on the Integration of Machine Learning with Sampling-based
Motion Planning [9.264471872135623]
本調査は、サンプリングベースモーションプランナー(SBMP)の計算効率と適用性を改善するための機械学習の取り組みを概観する。
まず、ノードサンプリング、衝突検出、距離または最も近い隣人、ローカルプランニング、終了条件など、SBMPのキーコンポーネントの強化に学習がどのように使われているかについて論じる。
また、機械学習を用いてロボットのデータ駆動モデルを提供し、それをSBMPで使用する方法についても論じている。
論文 参考訳(メタデータ) (2022-11-15T18:13:49Z) - ProgPrompt: Generating Situated Robot Task Plans using Large Language
Models [68.57918965060787]
大規模言語モデル(LLM)は、タスク計画中の潜在的な次のアクションを評価するために使用することができる。
本稿では, プログラム型LCMプロンプト構造を用いて, 配置環境間での計画生成機能を実現する。
論文 参考訳(メタデータ) (2022-09-22T20:29:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。