論文の概要: DeeR-VLA: Dynamic Inference of Multimodal Large Language Models for Efficient Robot Execution
- arxiv url: http://arxiv.org/abs/2411.02359v1
- Date: Mon, 04 Nov 2024 18:26:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:48:57.201178
- Title: DeeR-VLA: Dynamic Inference of Multimodal Large Language Models for Efficient Robot Execution
- Title(参考訳): DeeR-VLA:効率的なロボット実行のための多モード大言語モデルの動的推論
- Authors: Yang Yue, Yulin Wang, Bingyi Kang, Yizeng Han, Shenzhi Wang, Shiji Song, Jiashi Feng, Gao Huang,
- Abstract要約: 実世界のロボットのためのMLLMの開発は、ロボットプラットフォームで利用可能な計算能力とメモリ容量が典型的に限られているため、難しい。
活性化MLLMのサイズを自動的に調整するロボットビジョンランゲージ・アクション・モデル(DeeR)の動的早期実行フレームワークを提案する。
DeeR は LLM の計算コストを 5.2-6.5x に削減し、GPU のメモリを 2-6x に削減した。
- 参考スコア(独自算出の注目度): 114.61347672265076
- License:
- Abstract: MLLMs have demonstrated remarkable comprehension and reasoning capabilities with complex language and visual data. These advances have spurred the vision of establishing a generalist robotic MLLM proficient in understanding complex human instructions and accomplishing various embodied tasks. However, developing MLLMs for real-world robots is challenging due to the typically limited computation and memory capacities available on robotic platforms. In contrast, the inference of MLLMs involves storing billions of parameters and performing tremendous computation, imposing significant hardware demands. In our paper, we propose a Dynamic Early-Exit Framework for Robotic Vision-Language-Action Model (DeeR-VLA, or simply DeeR) that automatically adjusts the size of the activated MLLM based on each situation at hand. The approach leverages a multi-exit architecture in MLLMs, which allows the model to terminate processing once a proper size of the model has been activated for a specific situation, thus avoiding further redundant computation. Additionally, we develop novel algorithms that establish early-termination criteria for DeeR, conditioned on predefined demands such as average computational cost (i.e., power consumption), as well as peak computational consumption (i.e., latency) and GPU memory usage. These enhancements ensure that DeeR operates efficiently under varying resource constraints while maintaining competitive performance. On the CALVIN robot manipulation benchmark, DeeR demonstrates significant reductions in computational costs of LLM by 5.2-6.5x and GPU memory of LLM by 2-6x without compromising performance. Code and checkpoints are available at https://github.com/yueyang130/DeeR-VLA.
- Abstract(参考訳): MLLMは、複雑な言語と視覚データによる顕著な理解と推論能力を示した。
これらの進歩は、複雑な人間の指示を理解し、様々な具体的タスクを達成するのに熟練した汎用ロボットMLLMを確立するというビジョンを刺激した。
しかし、現実のロボットのためのMLLMの開発は、ロボットプラットフォームで利用可能な計算能力とメモリ容量が典型的に限られているため、難しい。
対照的に、MLLMの推論は数十億のパラメータを格納し、膨大な計算を行い、重要なハードウェア要求を示唆する。
本稿では,ロボットビジョン・ランゲージ・アクション・モデル(DeeR-VLA,あるいは単にDeeR)の動的早期実行フレームワークを提案する。
このアプローチはMLLMのマルチエグジットアーキテクチャを活用し、モデルが特定の状況下で適切なサイズがアクティブになったときに処理を終了できるので、さらなる冗長な計算を避けることができる。
さらに、DeeRの早期終了基準を確立するアルゴリズムを開発し、平均計算コスト(電力消費)やピーク計算消費(遅延)、GPUメモリ使用量といった事前定義された要求を条件とした。
これらの強化により、DeeRは競争性能を維持しながら、リソースの制約の異なる効率的な運用を可能にする。
CALVINのロボット操作ベンチマークでは、DeeRはLLMの計算コストを5.2-6.5x、LLMのGPUメモリを2-6xで大幅に削減した。
コードとチェックポイントはhttps://github.com/yueyang130/DeeR-VLAで入手できる。
関連論文リスト
- Scaling Autonomous Agents via Automatic Reward Modeling And Planning [52.39395405893965]
大規模言語モデル(LLM)は、様々なタスクにまたがる顕著な機能を示している。
しかし、彼らは多段階の意思決定と環境フィードバックを必要とする問題に苦戦している。
人間のアノテーションを使わずに環境から報酬モデルを自動的に学習できるフレームワークを提案する。
論文 参考訳(メタデータ) (2025-02-17T18:49:25Z) - HAMSTER: Hierarchical Action Models For Open-World Robot Manipulation [54.03004125910057]
階層型視覚-言語-アクションモデルは、標準的なモノリシックVLAモデルよりも、ドメイン外のデータを利用するのに効果的であることを示す。
階層設計により、高レベルなVLMは、オフドメイン微調整データと実ロボットテストシナリオの間の重要なドメインギャップをまたいで転送可能であることを示す。
論文 参考訳(メタデータ) (2025-02-08T07:50:22Z) - A Dual Process VLA: Efficient Robotic Manipulation Leveraging VLM [0.26334346517416873]
VLA(Vision-Language-Action)モデルでは、視覚コンテキストと言語コマンドを統合することで、ロボットが複雑なタスクを実行できる。
これを解決するために,デュアルプロセス理論に着想を得た階層型フレームワークであるDual Process VLA(DP-VLA)を提案する。
RoboCasaデータセットの実験結果は、DP-VLAがより高速な推論とより高いタスク成功率を達成することを示した。
論文 参考訳(メタデータ) (2024-10-21T00:36:02Z) - LLaRA: Supercharging Robot Learning Data for Vision-Language Policy [56.505551117094534]
我々はLLaRA: Large Language and Robotics Assistantを紹介した。
まず、既存の行動クローニングデータセットからロボットのための会話スタイルの指導データを生成する自動パイプラインを提案する。
このようなデータセットを限定的に微調整したVLMは、ロボット制御において有意義な行動決定を導出できることを示す。
論文 参考訳(メタデータ) (2024-06-28T17:59:12Z) - MMRo: Are Multimodal LLMs Eligible as the Brain for In-Home Robotics? [33.573056018368504]
本研究では,Multimodal LLM for Robotic (MMRo)ベンチマークを評価するための最初のベンチマークを紹介する。
我々は、MLLMがロボットの中央処理ユニットとして持つべき4つの重要な能力知覚、タスク計画、視覚的推論、安全性の測定を識別する。
以上の結果から,現在のMLLMはロボットの認知コアとして機能するほど信頼できないことが示唆された。
論文 参考訳(メタデータ) (2024-06-28T07:09:06Z) - Tender: Accelerating Large Language Models via Tensor Decomposition and Runtime Requantization [0.6445087473595953]
大規模言語モデル(LLM)は、機械学習における様々なタスクにおいて優れたパフォーマンスを示す。
LLM推論のデプロイは、高い計算とメモリ要求のために問題となる。
我々は,低精度でLLM推論を効率的に展開できるアルゴリズム-ハードウェア共設計ソリューションであるテンダーを提案する。
論文 参考訳(メタデータ) (2024-06-16T09:51:55Z) - Memory Is All You Need: An Overview of Compute-in-Memory Architectures for Accelerating Large Language Model Inference [2.9302211589186244]
大規模言語モデル(LLM)は自然言語処理を変換し、機械が人間のようなテキストを生成し、意味のある会話を行うことを可能にする。
計算と記憶能力の発達はムーアの法則の廃止によってさらに悪化している。
コンピュート・イン・メモリ(CIM)技術は、メモリ内でアナログ計算を直接実行することにより、AI推論を加速するための有望なソリューションを提供する。
論文 参考訳(メタデータ) (2024-06-12T16:57:58Z) - Interactive Planning Using Large Language Models for Partially
Observable Robotics Tasks [54.60571399091711]
大きな言語モデル(LLM)は、オープン語彙タスクを実行するロボットエージェントを作成することで、驚くべき成果を上げている。
LLMを用いた部分的に観測可能なタスクのための対話型計画手法を提案する。
論文 参考訳(メタデータ) (2023-12-11T22:54:44Z) - FusionAI: Decentralized Training and Deploying LLMs with Massive
Consumer-Level GPUs [57.12856172329322]
我々は、巨大な未使用のコンシューマレベルのGPUをアンロックする分散システムを構想する。
このシステムは、CPUとGPUメモリの制限、ネットワーク帯域幅の低さ、ピアとデバイスの多様性など、重要な課題に直面している。
論文 参考訳(メタデータ) (2023-09-03T13:27:56Z) - Language to Rewards for Robotic Skill Synthesis [37.21434094015743]
我々は,大規模言語モデル(LLM)を利用して,様々なロボットタスクを最適化し,達成可能な報酬パラメータを定義する新しいパラダイムを提案する。
LLMが生成する中間インタフェースとして報酬を用いることで、ハイレベルな言語命令と修正のギャップを、低レベルなロボット動作に効果的に埋めることができる。
論文 参考訳(メタデータ) (2023-06-14T17:27:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。