A Survey on Testing and Analysis of Quantum Software
- URL: http://arxiv.org/abs/2410.00650v1
- Date: Tue, 1 Oct 2024 13:05:54 GMT
- Title: A Survey on Testing and Analysis of Quantum Software
- Authors: Matteo Paltenghi, Michael Pradel,
- Abstract summary: We provide an extensive survey of the state of the art in testing and analysis of quantum software.
We discuss literature from several research communities, including quantum computing, software engineering, programming languages, and formal methods.
- Score: 21.351834312054844
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum computing is getting increasing interest from both academia and industry, and the quantum software landscape has been growing rapidly. The quantum software stack comprises quantum programs, implementing algorithms, and platforms like IBM Qiskit, Google Cirq, and Microsoft Q#, enabling their development. To ensure the reliability and performance of quantum software, various techniques for testing and analyzing it have been proposed, such as test generation, bug pattern detection, and circuit optimization. However, the large amount of work and the fact that work on quantum software is performed by several research communities, make it difficult to get a comprehensive overview of the existing techniques. In this work, we provide an extensive survey of the state of the art in testing and analysis of quantum software. We discuss literature from several research communities, including quantum computing, software engineering, programming languages, and formal methods. Our survey covers a wide range of topics, including expected and unexpected behavior of quantum programs, testing techniques, program analysis approaches, optimizations, and benchmarks for testing and analyzing quantum software. We create novel connections between the discussed topics and present them in an accessible way. Finally, we discuss key challenges and open problems to inspire future research.
Related papers
- Testing and Debugging Quantum Programs: The Road to 2030 [0.29260385019352086]
Quantum computing has re-emerged as a promising technology to solve problems that a classical computer could take hundreds of years to solve.
This paper presents a roadmap for addressing these challenges, pointing out the existing gaps in the literature and suggesting research directions.
arXiv Detail & Related papers (2024-05-15T08:35:48Z) - Towards Quantum-Native Communication Systems: New Developments, Trends,
and Challenges [63.67245855948243]
The survey examines technologies such as quantum-domain (QD) multi-input multi-output (MIMO), QD non-orthogonal multiple access (NOMA), quantum secure direct communication (QSDC)
The current status of quantum sensing, quantum radar, and quantum timing is briefly reviewed in support of future applications.
arXiv Detail & Related papers (2023-11-09T09:45:52Z) - Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
The anticipated applications of quantum computers span across science and industry.
We present a survey of several potential application areas of quantum algorithms.
We outline the challenges and opportunities in each area in an "end-to-end" fashion.
arXiv Detail & Related papers (2023-10-04T17:53:55Z) - The QUATRO Application Suite: Quantum Computing for Models of Human
Cognition [49.038807589598285]
We unlock a new class of applications ripe for quantum computing research -- computational cognitive modeling.
We release QUATRO, a collection of quantum computing applications from cognitive models.
arXiv Detail & Related papers (2023-09-01T17:34:53Z) - Quantum Software Engineering Challenges from Developers' Perspective:
Mapping Research Challenges to the Proposed Workflow Model [5.287156503763459]
Software engineering of quantum programs can be approached from two directions.
In this paper, we aim at bridging the gap by starting with the quantum computing workflow and by mapping existing software engineering research to this workflow.
arXiv Detail & Related papers (2023-08-02T13:32:31Z) - Testing Multi-Subroutine Quantum Programs: From Unit Testing to Integration Testing [2.8611507672161265]
This paper addresses the specific testing requirements of multi-subroutine quantum programs.
We focus on testing criteria and techniques based on the whole testing process perspective.
We conduct comprehensive testing on typical quantum subroutines, including diverse mutants and randomized inputs.
arXiv Detail & Related papers (2023-06-30T05:31:56Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Formal Verification of Quantum Programs: Theory, Tools and Challenges [0.0]
Survey aims to be a short introduction into the area of formal verification of quantum programs.
This survey examines some of the challenges that the field may face in the future, namely the development of complex quantum algorithms.
arXiv Detail & Related papers (2021-10-04T11:00:48Z) - Quantum walk processes in quantum devices [55.41644538483948]
We study how to represent quantum walk on a graph as a quantum circuit.
Our approach paves way for the efficient implementation of quantum walks algorithms on quantum computers.
arXiv Detail & Related papers (2020-12-28T18:04:16Z) - Quantum Software Engineering: Landscapes and Horizons [1.7704011486040847]
This paper defines the term "quantum software engineering" and introduces a quantum software life cycle.
The paper also gives a generic view of quantum software engineering and discusses the quantum software engineering processes, methods, and tools.
arXiv Detail & Related papers (2020-07-14T14:13:44Z) - An Application of Quantum Annealing Computing to Seismic Inversion [55.41644538483948]
We apply a quantum algorithm to a D-Wave quantum annealer to solve a small scale seismic inversions problem.
The accuracy achieved by the quantum computer is at least as good as that of the classical computer.
arXiv Detail & Related papers (2020-05-06T14:18:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.