A Survey on Testing and Analysis of Quantum Software
- URL: http://arxiv.org/abs/2410.00650v1
- Date: Tue, 1 Oct 2024 13:05:54 GMT
- Title: A Survey on Testing and Analysis of Quantum Software
- Authors: Matteo Paltenghi, Michael Pradel,
- Abstract summary: We provide an extensive survey of the state of the art in testing and analysis of quantum software.
We discuss literature from several research communities, including quantum computing, software engineering, programming languages, and formal methods.
- Score: 21.351834312054844
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum computing is getting increasing interest from both academia and industry, and the quantum software landscape has been growing rapidly. The quantum software stack comprises quantum programs, implementing algorithms, and platforms like IBM Qiskit, Google Cirq, and Microsoft Q#, enabling their development. To ensure the reliability and performance of quantum software, various techniques for testing and analyzing it have been proposed, such as test generation, bug pattern detection, and circuit optimization. However, the large amount of work and the fact that work on quantum software is performed by several research communities, make it difficult to get a comprehensive overview of the existing techniques. In this work, we provide an extensive survey of the state of the art in testing and analysis of quantum software. We discuss literature from several research communities, including quantum computing, software engineering, programming languages, and formal methods. Our survey covers a wide range of topics, including expected and unexpected behavior of quantum programs, testing techniques, program analysis approaches, optimizations, and benchmarks for testing and analyzing quantum software. We create novel connections between the discussed topics and present them in an accessible way. Finally, we discuss key challenges and open problems to inspire future research.
Related papers
- Quantum Software Engineering and Potential of Quantum Computing in Software Engineering Research: A Review [8.626933144631955]
This paper aims to review the role of quantum computing in software engineering research and the latest developments in quantum software engineering.
We begin by introducing quantum computing, exploring its fundamental concepts, and discussing its potential applications in software engineering.
arXiv Detail & Related papers (2025-02-13T03:22:36Z) - Testing and Debugging Quantum Programs: The Road to 2030 [0.29260385019352086]
Quantum computing has re-emerged as a promising technology to solve problems that a classical computer could take hundreds of years to solve.
This paper presents a roadmap for addressing these challenges, pointing out the existing gaps in the literature and suggesting research directions.
arXiv Detail & Related papers (2024-05-15T08:35:48Z) - Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
The anticipated applications of quantum computers span across science and industry.
We present a survey of several potential application areas of quantum algorithms.
We outline the challenges and opportunities in each area in an "end-to-end" fashion.
arXiv Detail & Related papers (2023-10-04T17:53:55Z) - The QUATRO Application Suite: Quantum Computing for Models of Human
Cognition [49.038807589598285]
We unlock a new class of applications ripe for quantum computing research -- computational cognitive modeling.
We release QUATRO, a collection of quantum computing applications from cognitive models.
arXiv Detail & Related papers (2023-09-01T17:34:53Z) - Quantum Software Engineering Challenges from Developers' Perspective:
Mapping Research Challenges to the Proposed Workflow Model [5.287156503763459]
Software engineering of quantum programs can be approached from two directions.
In this paper, we aim at bridging the gap by starting with the quantum computing workflow and by mapping existing software engineering research to this workflow.
arXiv Detail & Related papers (2023-08-02T13:32:31Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Quantum computing hardware for HEP algorithms and sensing [36.67390040418004]
Quantum information science harnesses the principles of quantum mechanics to realize computational algorithms with complexities vastly intractable by current computer platforms.
Fermilab's Superconducting Quantum Materials and Systems (SQMS) Center is dedicated to providing breakthroughs in quantum computing and sensing.
We discuss the two most promising superconducting quantum architectures for HEP algorithms, i.e. three-level systems (qutrits) supported by transmon devices coupled to planar devices and multi-level systems (qudits with arbitrary N energy levels) supported by superconducting 3D cavities.
arXiv Detail & Related papers (2022-04-19T01:37:36Z) - Formal Verification of Quantum Programs: Theory, Tools and Challenges [0.0]
Survey aims to be a short introduction into the area of formal verification of quantum programs.
This survey examines some of the challenges that the field may face in the future, namely the development of complex quantum algorithms.
arXiv Detail & Related papers (2021-10-04T11:00:48Z) - Quantum walk processes in quantum devices [55.41644538483948]
We study how to represent quantum walk on a graph as a quantum circuit.
Our approach paves way for the efficient implementation of quantum walks algorithms on quantum computers.
arXiv Detail & Related papers (2020-12-28T18:04:16Z) - Quantum Software Engineering: Landscapes and Horizons [1.7704011486040847]
This paper defines the term "quantum software engineering" and introduces a quantum software life cycle.
The paper also gives a generic view of quantum software engineering and discusses the quantum software engineering processes, methods, and tools.
arXiv Detail & Related papers (2020-07-14T14:13:44Z) - An Application of Quantum Annealing Computing to Seismic Inversion [55.41644538483948]
We apply a quantum algorithm to a D-Wave quantum annealer to solve a small scale seismic inversions problem.
The accuracy achieved by the quantum computer is at least as good as that of the classical computer.
arXiv Detail & Related papers (2020-05-06T14:18:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.