Experimental demonstration of Robust Amplitude Estimation on near-term quantum devices for chemistry applications
- URL: http://arxiv.org/abs/2410.00686v1
- Date: Tue, 1 Oct 2024 13:42:01 GMT
- Title: Experimental demonstration of Robust Amplitude Estimation on near-term quantum devices for chemistry applications
- Authors: Alexander Kunitsa, Nicole Bellonzi, Shangjie Guo, Jérôme F. Gonthier, Corneliu Buda, Clena M. Abuan, Jhonathan Romero,
- Abstract summary: This study explores hardware implementation of Robust Amplitude Estimation (RAE) on IBM quantum devices.
We demonstrate its application in quantum chemistry for one- and two-qubit Hamiltonian systems.
- Score: 36.136619420474766
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study explores hardware implementation of Robust Amplitude Estimation (RAE) on IBM quantum devices, demonstrating its application in quantum chemistry for one- and two-qubit Hamiltonian systems. Known for potentially offering quadratic speedups over traditional methods in estimating expectation values, RAE is evaluated under realistic noisy conditions. Our experiments provide detailed insights into the practical challenges associated with RAE. We achieved a significant reduction in sampling requirements compared to direct measurement techniques. In estimating the ground state energy of the hydrogen molecule, the RAE implementation demonstrated two orders of magnitude better accuracy for the two-qubit experiments and achieved chemical accuracy. These findings reveal its potential to enhance computational efficiencies in quantum chemistry applications despite the inherent limitations posed by hardware noise. We also found that its performance can be adversely impacted by coherent error and device stability and does not always correlate with the average gate error. These results underscore the importance of adapting quantum computational methods to hardware specifics to realize their full potential in practical scenarios.
Related papers
- Practical techniques for high precision measurements on near-term quantum hardware: a Case Study in Molecular Energy Estimation [0.0]
We show how to minimize shot overhead, circuit overhead, measurement noise, and time-dependent measurement noise.
These strategies pave the way for more reliable and accurate quantum computations.
arXiv Detail & Related papers (2024-09-04T09:52:14Z) - Dynamical Mean Field Theory for Real Materials on a Quantum Computer [0.0]
We report on the development of a hybrid quantum-classical DFT+DMFT simulation framework.
Hardware experiments with up to 14 qubits on the IBM Quantum system are conducted.
We showcase the utility of our quantum DFT+DMFT workflow by assessing the correlation effects on the electronic structure of a real material.
arXiv Detail & Related papers (2024-04-15T07:45:50Z) - Non-Markovian noise sources for quantum error mitigation [0.0]
We present a non-Markovian model of quantum state evolution and a quantum error mitigation cost function tailored for NISQ devices.
Our findings reveal that the cost function for quantum error mitigation increases as the coupling strength between the quantum system and its environment intensifies.
arXiv Detail & Related papers (2023-02-10T05:10:27Z) - Experimental quantum computational chemistry with optimised unitary coupled cluster ansatz [23.6818896497932]
Experimental realisation of scalable and high-precision quantum chemistry simulation remains elusive.
We push forward the limit of experimental quantum computational chemistry and successfully scale up the implementation of VQE with an optimised unitary coupled-cluster ansatz to 12 qubits.
arXiv Detail & Related papers (2022-12-15T18:04:28Z) - Potential and limitations of quantum extreme learning machines [55.41644538483948]
We present a framework to model QRCs and QELMs, showing that they can be concisely described via single effective measurements.
Our analysis paves the way to a more thorough understanding of the capabilities and limitations of both QELMs and QRCs.
arXiv Detail & Related papers (2022-10-03T09:32:28Z) - Reducing the cost of energy estimation in the variational quantum
eigensolver algorithm with robust amplitude estimation [50.591267188664666]
Quantum chemistry and materials is one of the most promising applications of quantum computing.
Much work is still to be done in matching industry-relevant problems in these areas with quantum algorithms that can solve them.
arXiv Detail & Related papers (2022-03-14T16:51:36Z) - Measuring NISQ Gate-Based Qubit Stability Using a 1+1 Field Theory and
Cycle Benchmarking [50.8020641352841]
We study coherent errors on a quantum hardware platform using a transverse field Ising model Hamiltonian as a sample user application.
We identify inter-day and intra-day qubit calibration drift and the impacts of quantum circuit placement on groups of qubits in different physical locations on the processor.
This paper also discusses how these measurements can provide a better understanding of these types of errors and how they may improve efforts to validate the accuracy of quantum computations.
arXiv Detail & Related papers (2022-01-08T23:12:55Z) - Quasiprobabilistic state-overlap estimator for NISQ devices [0.39583175274885335]
A key concept, the state overlap between two quantum states, offers a natural tool to verify and cross-validate quantum simulators and quantum computers.
Here, we demonstrate a practical approach for measuring the overlap between quantum states based on a factorable quasiprobabilistic representation of the states.
arXiv Detail & Related papers (2021-12-22T01:51:31Z) - Characterizing quantum instruments: from non-demolition measurements to
quantum error correction [48.43720700248091]
In quantum information processing quantum operations are often processed alongside measurements which result in classical data.
Non-unitary dynamical processes can take place on the system, for which common quantum channel descriptions fail to describe the time evolution.
Quantum measurements are correctly treated by means of so-called quantum instruments capturing both classical outputs and post-measurement quantum states.
arXiv Detail & Related papers (2021-10-13T18:00:13Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.