論文の概要: Pseudo-Non-Linear Data Augmentation via Energy Minimization
- arxiv url: http://arxiv.org/abs/2410.00718v1
- Date: Tue, 1 Oct 2024 14:08:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-05 04:15:24.452260
- Title: Pseudo-Non-Linear Data Augmentation via Energy Minimization
- Title(参考訳): エネルギー最小化による擬似非線形データ拡張
- Authors: Pingbang Hu, Mahito Sugiyama,
- Abstract要約: 本稿では,エネルギーに基づくモデリングと情報幾何学の原理に基づく,新しい解釈可能なデータ拡張手法を提案する。
ディープニューラルネットワークに依存するブラックボックス生成モデルとは異なり、我々のアプローチは、これらの非解釈可能な変換を明示的で理論的に基礎付けられたモデルに置き換える。
- 参考スコア(独自算出の注目度): 9.100580570005407
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a novel and interpretable data augmentation method based on energy-based modeling and principles from information geometry. Unlike black-box generative models, which rely on deep neural networks, our approach replaces these non-interpretable transformations with explicit, theoretically grounded ones, ensuring interpretability and strong guarantees such as energy minimization. Central to our method is the introduction of the backward projection algorithm, which reverses dimension reduction to generate new data. Empirical results demonstrate that our method achieves competitive performance with black-box generative models while offering greater transparency and interpretability.
- Abstract(参考訳): 本稿では,エネルギーに基づくモデリングと情報幾何学の原理に基づく,新しい解釈可能なデータ拡張手法を提案する。
ディープニューラルネットワークに依存するブラックボックス生成モデルとは異なり、我々のアプローチは、これらの非解釈可能な変換を明示的で理論的に根拠のある変換に置き換え、解釈可能性とエネルギー最小化のような強力な保証を確保する。
提案手法の中心となるのは,次元減少を逆転して新しいデータを生成する後方投影アルゴリズムの導入である。
実験結果から,ブラックボックス生成モデルとの競合性能は向上し,透明性と解釈性も向上した。
関連論文リスト
- Novel Saliency Analysis for the Forward Forward Algorithm [0.0]
ニューラルネットワークトレーニングにフォワードフォワードアルゴリズムを導入する。
この方法は、2つのフォワードパスを実際のデータで実行し、正の強化を促進する。
従来のサリエンシ手法に固有の制約を克服するため,フォワードフォワードフレームワークに特化してベスポークサリエンシアルゴリズムを開発した。
論文 参考訳(メタデータ) (2024-09-18T17:21:59Z) - Diffusion-Based Neural Network Weights Generation [80.89706112736353]
D2NWGは拡散に基づくニューラルネットワーク重み生成技術であり、転送学習のために高性能な重みを効率よく生成する。
本稿では,ニューラルネットワーク重み生成のための遅延拡散パラダイムを再放送するために,生成的ハイパー表現学習を拡張した。
我々のアプローチは大規模言語モデル(LLM)のような大規模アーキテクチャにスケーラブルであり、現在のパラメータ生成技術の限界を克服しています。
論文 参考訳(メタデータ) (2024-02-28T08:34:23Z) - STANLEY: Stochastic Gradient Anisotropic Langevin Dynamics for Learning
Energy-Based Models [41.031470884141775]
エネルギーベースモデル(EBM)のためのエンドツーエンド学習アルゴリズムを提案する。
本稿では、異方性段差と勾配インフォームド共分散行列に基づく新しい高次元サンプリング法を提案する。
提案手法,すなわちSTANLEYは,新しいMCMC法を用いてエネルギーベースモデルを学習するための最適化アルゴリズムである。
論文 参考訳(メタデータ) (2023-10-19T11:55:16Z) - Towards a Better Theoretical Understanding of Independent Subnetwork Training [56.24689348875711]
独立サブネットワークトレーニング(IST)の理論的考察
ISTは、上記の問題を解決するための、最近提案され、非常に効果的である。
圧縮通信を用いた分散手法など,ISTと代替手法の基本的な違いを同定する。
論文 参考訳(メタデータ) (2023-06-28T18:14:22Z) - Information-Theoretic GAN Compression with Variational Energy-based
Model [36.77535324130402]
本稿では,情報理論に基づく知識蒸留手法を提案する。
提案アルゴリズムは,生成逆数ネットワークのモデル圧縮において,一貫した性能を実現する。
論文 参考訳(メタデータ) (2023-03-28T15:32:21Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
モデルに基づく強化学習のサンプル効率を改善するために、潜在変数モデルが学習、計画、探索をいかに促進するかは理論上、実証上、不明である。
状態-作用値関数に対する潜在変数モデルの表現ビューを提供する。これは、抽出可能な変分学習アルゴリズムと楽観主義/悲観主義の原理の効果的な実装の両方を可能にする。
特に,潜伏変数モデルのカーネル埋め込みを組み込んだUPB探索を用いた計算効率の良い計画アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-17T00:26:31Z) - An Energy-Based Prior for Generative Saliency [62.79775297611203]
本稿では,情報的エネルギーベースモデルを事前分布として採用する,新たな生成正当性予測フレームワークを提案する。
生成サリエンシモデルを用いて,画像から画素単位の不確実性マップを得ることができ,サリエンシ予測におけるモデル信頼度を示す。
実験結果から, エネルギーベース先行モデルを用いた生成塩分率モデルでは, 精度の高い塩分率予測だけでなく, 人間の知覚と整合した信頼性の高い不確実性マップを実現できることが示された。
論文 参考訳(メタデータ) (2022-04-19T10:51:00Z) - Learning Generative Vision Transformer with Energy-Based Latent Space
for Saliency Prediction [51.80191416661064]
本稿では,有意な物体検出に先立って,潜伏変数を持つ新しい視覚変換器を提案する。
ビジョントランスネットワークとエネルギーベース先行モデルの両方は、マルコフ連鎖モンテカルロによる最大推定を通じて共同で訓練される。
生成型視覚変換器により、画像から容易に画素単位の不確実性マップを得ることができ、画像から唾液濃度を予測するためのモデル信頼度を示す。
論文 参考訳(メタデータ) (2021-12-27T06:04:33Z) - A VAE-Based Bayesian Bidirectional LSTM for Renewable Energy Forecasting [0.4588028371034407]
再生可能エネルギーの断続的な性質は ネットワークの運用計画に 新たな課題をもたらします
本稿では,データとモデルの不確実性に対処し,再生可能発電予測のための新しいベイズ確率的手法を提案する。
VAE-Bayesian BiLSTMは、データセットの異なるサイズに対する予測精度と計算効率において、他の確率的深層学習法よりも優れていると推定された。
論文 参考訳(メタデータ) (2021-03-24T03:47:20Z) - E(n) Equivariant Graph Neural Networks [86.75170631724548]
本稿では,E(n)-Equivariant Graph Neural Networks (EGNNs) と呼ばれる回転,翻訳,反射,置換に等価なグラフニューラルネットワークを学習する新しいモデルを提案する。
既存の手法とは対照的に、私たちの仕事は計算的に高価な中間層における高階表現を必要としません。
論文 参考訳(メタデータ) (2021-02-19T10:25:33Z) - Estimating Model Uncertainty of Neural Networks in Sparse Information
Form [39.553268191681376]
ディープニューラルネットワーク(DNN)におけるモデル不確実性のスパース表現について述べる。
我々の研究の重要な洞察は、情報行列はそのスペクトルにおいてスパースである傾向があることである。
DNNにおけるモデル不確実性を表すために,情報形式が適用可能であることを示す。
論文 参考訳(メタデータ) (2020-06-20T18:09:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。