論文の概要: E(n) Equivariant Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2102.09844v1
- Date: Fri, 19 Feb 2021 10:25:33 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-22 13:36:28.251009
- Title: E(n) Equivariant Graph Neural Networks
- Title(参考訳): E(n)同変グラフニューラルネットワーク
- Authors: Victor Garcia Satorras, Emiel Hoogeboom, Max Welling
- Abstract要約: 本稿では,E(n)-Equivariant Graph Neural Networks (EGNNs) と呼ばれる回転,翻訳,反射,置換に等価なグラフニューラルネットワークを学習する新しいモデルを提案する。
既存の手法とは対照的に、私たちの仕事は計算的に高価な中間層における高階表現を必要としません。
- 参考スコア(独自算出の注目度): 86.75170631724548
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces a new model to learn graph neural networks equivariant
to rotations, translations, reflections and permutations called
E(n)-Equivariant Graph Neural Networks (EGNNs). In contrast with existing
methods, our work does not require computationally expensive higher-order
representations in intermediate layers while it still achieves competitive or
better performance. In addition, whereas existing methods are limited to
equivariance on 3 dimensional spaces, our model is easily scaled to
higher-dimensional spaces. We demonstrate the effectiveness of our method on
dynamical systems modelling, representation learning in graph autoencoders and
predicting molecular properties.
- Abstract(参考訳): 本稿では,E(n)-Equivariant Graph Neural Networks (EGNNs) と呼ばれる回転,翻訳,反射,置換に等価なグラフニューラルネットワークを学習する新しいモデルを提案する。
既存の手法とは対照的に、私たちの仕事は計算的に高価な中間層における高階表現を必要としません。
さらに、既存の手法は3次元空間上の等価性に限定されるが、私たちのモデルは容易に高次元空間にスケールされる。
本手法の動的システムモデリング,グラフオートエンコーダにおける表現学習,分子特性予測への効果を実証する。
関連論文リスト
- Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
我々はLattice-Equivariant Neural Networks (LENNs)と呼ばれる新しい同変ニューラルネットワークのクラスを提案する。
我々の手法は、ニューラルネットワークに基づく代理モデルLattice Boltzmann衝突作用素の学習を目的とした、最近導入されたフレームワーク内で開発されている。
本研究は,実世界のシミュレーションにおける機械学習強化Lattice Boltzmann CFDの実用化に向けて展開する。
論文 参考訳(メタデータ) (2024-05-22T17:23:15Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - Equivariant Graph Neural Operator for Modeling 3D Dynamics [148.98826858078556]
我々は,次のステップの予測ではなく,ダイナミックスを直接トラジェクトリとしてモデル化するために,Equivariant Graph Neural Operator (EGNO)を提案する。
EGNOは3次元力学の時間的進化を明示的に学習し、時間とともに関数として力学を定式化し、それを近似するためにニューラル演算子を学習する。
粒子シミュレーション、人間のモーションキャプチャー、分子動力学を含む複数の領域における総合的な実験は、既存の手法と比較して、EGNOの極めて優れた性能を示す。
論文 参考訳(メタデータ) (2024-01-19T21:50:32Z) - E($3$) Equivariant Graph Neural Networks for Particle-Based Fluid
Mechanics [2.1401663582288144]
等変グラフニューラルネットワークは、より正確な動的相互作用モデルを学ぶことができることを示した。
3次元崩壊するテイラー・グリーン渦と3次元逆ポアゼイユ流の2つのよく研究された流れ系をベンチマークした。
論文 参考訳(メタデータ) (2023-03-31T21:56:35Z) - Spatial Attention Kinetic Networks with E(n)-Equivariance [0.951828574518325]
回転、翻訳、反射、n次元幾何学空間上の置換と等価なニューラルネットワークは、物理モデリングにおいて有望であることを示している。
本稿では, エッジベクトルの線形結合をニューラルネットワークでパラメトリケートし, 等価性を実現するための, 簡易な代替関数形式を提案する。
E(n)-等価性を持つ空間的注意運動ネットワーク(SAKE)を設計する。
論文 参考訳(メタデータ) (2023-01-21T05:14:29Z) - Spiking Variational Graph Auto-Encoders for Efficient Graph
Representation Learning [10.65760757021534]
本稿では,効率的なグラフ表現学習のためのSNNに基づく深層生成手法,すなわちSpking Variational Graph Auto-Encoders (S-VGAE)を提案する。
我々は,複数のベンチマークグラフデータセット上でリンク予測実験を行い,この結果から,グラフ表現学習における他のANNやSNNに匹敵する性能で,より少ないエネルギーを消費することを示した。
論文 参考訳(メタデータ) (2022-10-24T12:54:41Z) - Equivariant vector field network for many-body system modeling [65.22203086172019]
Equivariant Vector Field Network (EVFN) は、新しい同変層と関連するスカラー化およびベクトル化層に基づいて構築されている。
シミュレーションされたニュートン力学系の軌跡を全観測データと部分観測データで予測する手法について検討した。
論文 参考訳(メタデータ) (2021-10-26T14:26:25Z) - Hyperbolic Variational Graph Neural Network for Modeling Dynamic Graphs [77.33781731432163]
我々は,ノード表現の推論を目的とした双曲空間における動的グラフ表現を初めて学習する。
本稿では,HVGNNと呼ばれる新しいハイパーボリック変動グラフネットワークを提案する。
特に,動力学をモデル化するために,理論的に接地した時間符号化手法に基づく時間gnn(tgnn)を導入する。
論文 参考訳(メタデータ) (2021-04-06T01:44:15Z) - Parameterized Hypercomplex Graph Neural Networks for Graph
Classification [1.1852406625172216]
我々は超複雑特徴変換の特性を利用するグラフニューラルネットワークを開発した。
特に、提案したモデルのクラスでは、代数自身を特定する乗法則は、トレーニング中にデータから推測される。
提案するハイパーコンプレックスgnnをいくつかのオープングラフベンチマークデータセット上でテストし,そのモデルが最先端の性能に達することを示す。
論文 参考訳(メタデータ) (2021-03-30T18:01:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。