論文の概要: Adaptive Motion Generation Using Uncertainty-Driven Foresight Prediction
- arxiv url: http://arxiv.org/abs/2410.00774v1
- Date: Tue, 1 Oct 2024 15:13:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-05 04:05:38.976258
- Title: Adaptive Motion Generation Using Uncertainty-Driven Foresight Prediction
- Title(参考訳): 不確かさ駆動予測を用いた適応運動生成
- Authors: Hyogo Hiruma, Hiroshi Ito, Tetusya Ogata,
- Abstract要約: 環境の不確実性は、現実のロボットタスクを実行する際には、長年、扱いにくい特徴だった。
本稿では,動的内部シミュレーションを用いたフォレスト予測を用いた既存の予測学習に基づくロボット制御手法を拡張した。
その結果,提案モデルではドアとの相互作用により動作が適応的に分岐し,従来の手法では安定に分岐しなかった。
- 参考スコア(独自算出の注目度): 2.2120851074630177
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Uncertainty of environments has long been a difficult characteristic to handle, when performing real-world robot tasks. This is because the uncertainty produces unexpected observations that cannot be covered by manual scripting. Learning based robot controlling methods are a promising approach for generating flexible motions against unknown situations, but still tend to suffer under uncertainty due to its deterministic nature. In order to adaptively perform the target task under such conditions, the robot control model must be able to accurately understand the possible uncertainty, and to exploratively derive the optimal action that minimizes such uncertainty. This paper extended an existing predictive learning based robot control method, which employ foresight prediction using dynamic internal simulation. The foresight module refines the model's hidden states by sampling multiple possible futures and replace with the one that led to the lower future uncertainty. The adaptiveness of the model was evaluated on a door opening task. The door can be opened either by pushing, pulling, or sliding, but robot cannot visually distinguish which way, and is required to adapt on the fly. The results showed that the proposed model adaptively diverged its motion through interaction with the door, whereas conventional methods failed to stably diverge. The models were analyzed on Lyapunov exponents of RNN hidden states which reflect the possible divergence at each time step during task execution. The result indicated that the foresight module biased the model to consider future consequences, which lead to embedding uncertainties at the policy of the robot controller, rather than the resultant observation. This is beneficial for implementing adaptive behaviors, which indices derivation of diverse motion during exploration.
- Abstract(参考訳): 環境の不確実性は、現実のロボットタスクを実行する際には、長年、扱いにくい特徴だった。
これは、不確実性は手動のスクリプティングではカバーできない予期せぬ観察を生成するためである。
学習に基づくロボット制御手法は、未知の状況に対して柔軟な動作を生成するための有望なアプローチであるが、決定論的性質のため、いまだ不確実性に苦しむ傾向にある。
このような条件下で目標タスクを適応的に実行するためには、ロボット制御モデルは、起こりうる不確実性を正確に理解し、そのような不確実性を最小化する最適なアクションを爆発的に導き出す必要がある。
本稿では,動的内部シミュレーションを用いたフォレスト予測を用いた既存の予測学習に基づくロボット制御手法を拡張した。
フォレストモジュールは、複数の可能性のある未来をサンプリングすることでモデルの隠れた状態を洗練し、より低い未来の不確実性に繋がったものに置き換えられる。
ドアオープニング作業において,モデルの適応性を評価した。
ドアは押したり引いたり、滑ったりすることで開けることができるが、ロボットはどの方向を視覚的に区別することができず、ハエに適応する必要がある。
その結果,提案モデルではドアとの相互作用により動作が適応的に分岐し,従来の手法では安定に分岐しなかった。
RNN隠蔽状態のリアプノフ指数を用いて,タスク実行中の各ステップの発散を反映したモデル解析を行った。
その結果,フォレストモジュールは将来の結果を考えるためにモデルに偏りがあることが示され,その結果,ロボットコントローラの方針に不確実性を埋め込む結果となった。
これは、探索中の多様な動きの導出を示す適応的な行動を実装するのに有用である。
関連論文リスト
- Existence Is Chaos: Enhancing 3D Human Motion Prediction with Uncertainty Consideration [27.28184416632815]
トレーニングデータにおける記録された動きは、所定の結果ではなく、将来の可能性の観測である可能性が示唆された。
不確実性を考慮した計算効率の良いエンコーダデコーダモデルを提案する。
論文 参考訳(メタデータ) (2024-03-21T03:34:18Z) - Model Checking for Closed-Loop Robot Reactive Planning [0.0]
モデル検査を用いて、ディファレンシャルドライブホイールロボットの多段階計画を作成することにより、即時危険を回避できることを示す。
簡単な生物エージェントのエゴセントリックな反応を反映した,小型で汎用的なモデル検査アルゴリズムを用いて,リアルタイムで計画を生成する。
論文 参考訳(メタデータ) (2023-11-16T11:02:29Z) - Model Predictive Control with Gaussian-Process-Supported Dynamical
Constraints for Autonomous Vehicles [82.65261980827594]
本研究では、学習したガウス過程を利用して人間の運転行動を予測する自動運転車のモデル予測制御手法を提案する。
マルチモード予測制御アプローチは、人間のドライバーの意図を考察する。
論文 参考訳(メタデータ) (2023-03-08T17:14:57Z) - Safe Machine-Learning-supported Model Predictive Force and Motion
Control in Robotics [0.0]
人間とロボットの相互作用や脆弱な物体のハンドリングのような多くのロボットタスクは、安全かつ高性能な操作を実現するために、動き制御と共に現れる力とモーメントの厳密な制御と制限を必要とする。
本研究では,学習支援型モデル予測力と運動制御方式を提案する。
論文 参考訳(メタデータ) (2023-03-08T13:30:02Z) - Active Uncertainty Reduction for Safe and Efficient Interaction
Planning: A Shielding-Aware Dual Control Approach [9.07774184840379]
本稿では,暗黙的二重制御パラダイムに基づく対話型動作計画における能動的不確実性低減を実現するアルゴリズムを提案する。
提案手法は, 動的プログラミングのサンプリングに基づく近似に依拠し, リアルタイム勾配最適化法で容易に解けるモデル予測制御問題に導かれる。
論文 参考訳(メタデータ) (2023-02-01T01:34:48Z) - Interpretable Self-Aware Neural Networks for Robust Trajectory
Prediction [50.79827516897913]
本稿では,意味概念間で不確実性を分散する軌道予測のための解釈可能なパラダイムを提案する。
実世界の自動運転データに対する我々のアプローチを検証し、最先端のベースラインよりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-11-16T06:28:20Z) - Real-to-Sim: Predicting Residual Errors of Robotic Systems with Sparse
Data using a Learning-based Unscented Kalman Filter [65.93205328894608]
我々は,動的・シミュレータモデルと実ロボット間の残差を学習する。
学習した残差誤差により、動的モデル、シミュレーション、および実際のハードウェア間の現実的ギャップをさらに埋めることができることを示す。
論文 参考訳(メタデータ) (2022-09-07T15:15:12Z) - Stochastic Trajectory Prediction via Motion Indeterminacy Diffusion [88.45326906116165]
運動不確定性拡散(MID)の逆過程として軌道予測タスクを定式化する新しい枠組みを提案する。
我々は,履歴行動情報と社会的相互作用を状態埋め込みとしてエンコードし,トランジトリの時間的依存性を捉えるためにトランスフォーマーに基づく拡散モデルを考案する。
スタンフォード・ドローンやETH/UCYデータセットなど,人間の軌道予測ベンチマーク実験により,本手法の優位性を実証した。
論文 参考訳(メタデータ) (2022-03-25T16:59:08Z) - Active Uncertainty Learning for Human-Robot Interaction: An Implicit
Dual Control Approach [5.05828899601167]
暗黙的な二重制御パラダイムに基づくループ内動作計画のための不確実性学習を実現するアルゴリズムを提案する。
提案手法は,動的プログラミングモデル予測制御問題のサンプリングに基づく近似に依拠する。
結果として得られたポリシーは、連続的およびカテゴリー的不確実性を持つ一般的な人間の予測モデルに対する二重制御効果を維持することが示されている。
論文 参考訳(メタデータ) (2022-02-15T20:40:06Z) - Probabilistic Human Motion Prediction via A Bayesian Neural Network [71.16277790708529]
本稿では,人間の動作予測のための確率モデルを提案する。
我々のモデルは、観測された動きシーケンスが与えられたときに、いくつかの将来の動きを生成することができる。
我々は、大規模ベンチマークデータセットHuman3.6mに対して、我々のアプローチを広範囲に検証した。
論文 参考訳(メタデータ) (2021-07-14T09:05:33Z) - Risk-Sensitive Sequential Action Control with Multi-Modal Human
Trajectory Forecasting for Safe Crowd-Robot Interaction [55.569050872780224]
本稿では,リスクに敏感な最適制御に基づく安全な群集ロボットインタラクションのためのオンラインフレームワークを提案し,そのリスクをエントロピーリスク尺度でモデル化する。
私たちのモジュラーアプローチは、クラウドとロボットの相互作用を学習ベースの予測とモデルベースの制御に分離します。
シミュレーション研究と実世界の実験により、このフレームワークは、現場にいる50人以上の人間との衝突を避けながら、安全で効率的なナビゲーションを実現することができることが示された。
論文 参考訳(メタデータ) (2020-09-12T02:02:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。