論文の概要: Active Uncertainty Learning for Human-Robot Interaction: An Implicit
Dual Control Approach
- arxiv url: http://arxiv.org/abs/2202.07720v1
- Date: Tue, 15 Feb 2022 20:40:06 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-17 16:17:04.025154
- Title: Active Uncertainty Learning for Human-Robot Interaction: An Implicit
Dual Control Approach
- Title(参考訳): 人間-ロボットインタラクションのためのアクティブ不確実性学習 : 暗黙のデュアル制御アプローチ
- Authors: Haimin Hu, Jaime F. Fisac
- Abstract要約: 暗黙的な二重制御パラダイムに基づくループ内動作計画のための不確実性学習を実現するアルゴリズムを提案する。
提案手法は,動的プログラミングモデル予測制御問題のサンプリングに基づく近似に依拠する。
結果として得られたポリシーは、連続的およびカテゴリー的不確実性を持つ一般的な人間の予測モデルに対する二重制御効果を維持することが示されている。
- 参考スコア(独自算出の注目度): 5.05828899601167
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Predictive models are effective in reasoning about human motion, a crucial
part that affects safety and efficiency in human-robot interaction. However,
robots often lack access to certain key parameters of such models, for example,
human's objectives, their level of distraction, and willingness to cooperate.
Dual control theory addresses this challenge by treating unknown parameters as
stochastic hidden states and identifying their values using information
gathered during control of the robot. Despite its ability to optimally and
automatically trade off exploration and exploitation, dual control is
computationally intractable for general human-in-the-loop motion planning,
mainly due to nested trajectory optimization and human intent prediction. In
this paper, we present a novel algorithmic approach to enable active
uncertainty learning for human-in-the-loop motion planning based on the
implicit dual control paradigm. Our approach relies on sampling-based
approximation of stochastic dynamic programming, leading to a model predictive
control problem that can be readily solved by real-time gradient-based
optimization methods. The resulting policy is shown to preserve the dual
control effect for generic human predictive models with both continuous and
categorical uncertainty. The efficacy of our approach is demonstrated with
simulated driving examples.
- Abstract(参考訳): 予測モデルは、人間とロボットの相互作用の安全性と効率に影響を与える重要な部分である人間の動きの推論に有効である。
しかし、ロボットはしばしばそのようなモデルの特定の重要なパラメータ、例えば人間の目的、彼らの気晴らしのレベル、協力する意志などへのアクセスを欠いている。
双対制御理論は未知のパラメータを確率的隠れ状態として扱い、ロボットの制御中に収集された情報を用いてそれらの値を特定することでこの問題に対処している。
探索と搾取を最適かつ自動的にトレードオフすることができるにもかかわらず、双対制御は、主にネスト軌道最適化と人間の意図予測のために、一般の人道運動計画では計算的に難解である。
本稿では,暗黙の双対制御パラダイムに基づくループ内動作計画のためのアクティブ不確実性学習を実現するための新しいアルゴリズム的アプローチを提案する。
提案手法は,確率的動的プログラミングのサンプリングに基づく近似に依拠し,実時間勾配に基づく最適化手法で容易に解けるモデル予測制御問題を導出する。
結果として得られた方針は、連続的およびカテゴリー的不確実性を持つ一般的なヒト予測モデルに対する二重制御効果を保つことが示される。
本手法の有効性は, 模擬駆動例を用いて実証した。
関連論文リスト
- Navigating the Human Maze: Real-Time Robot Pathfinding with Generative Imitation Learning [0.0]
目標条件付き自己回帰モデルを導入し,個人間の複雑な相互作用を捉える。
このモデルは、潜在的なロボット軌道サンプルを処理し、周囲の個人の反応を予測する。
論文 参考訳(メタデータ) (2024-08-07T14:32:41Z) - Multi-Agent Dynamic Relational Reasoning for Social Robot Navigation [50.01551945190676]
社会ロボットナビゲーションは、日常生活の様々な状況において有用であるが、安全な人間とロボットの相互作用と効率的な軌道計画が必要である。
本稿では, 動的に進化する関係構造を明示的に推論した系統的関係推論手法を提案する。
マルチエージェント軌道予測とソーシャルロボットナビゲーションの有効性を実証する。
論文 参考訳(メタデータ) (2024-01-22T18:58:22Z) - Active Uncertainty Reduction for Safe and Efficient Interaction
Planning: A Shielding-Aware Dual Control Approach [9.07774184840379]
本稿では,暗黙的二重制御パラダイムに基づく対話型動作計画における能動的不確実性低減を実現するアルゴリズムを提案する。
提案手法は, 動的プログラミングのサンプリングに基づく近似に依拠し, リアルタイム勾配最適化法で容易に解けるモデル予測制御問題に導かれる。
論文 参考訳(メタデータ) (2023-02-01T01:34:48Z) - Model Predictive Control for Fluid Human-to-Robot Handovers [50.72520769938633]
人間の快適さを考慮に入れた計画運動は、人間ロボットのハンドオーバプロセスの一部ではない。
本稿では,効率的なモデル予測制御フレームワークを用いてスムーズな動きを生成することを提案する。
ユーザ数名の多様なオブジェクトに対して,人間とロボットのハンドオーバ実験を行う。
論文 参考訳(メタデータ) (2022-03-31T23:08:20Z) - SABER: Data-Driven Motion Planner for Autonomously Navigating
Heterogeneous Robots [112.2491765424719]
我々は、データ駆動型アプローチを用いて、異種ロボットチームをグローバルな目標に向けてナビゲートする、エンドツーエンドのオンラインモーションプランニングフレームワークを提案する。
モデル予測制御(SMPC)を用いて,ロボット力学を満たす制御入力を計算し,障害物回避時の不確実性を考慮した。
リカレントニューラルネットワークは、SMPC有限時間地平線解における将来の状態の不確かさを素早く推定するために用いられる。
ディープQ学習エージェントがハイレベルパスプランナーとして機能し、SMPCにロボットを望ましいグローバルな目標に向けて移動させる目標位置を提供する。
論文 参考訳(メタデータ) (2021-08-03T02:56:21Z) - Probabilistic Human Motion Prediction via A Bayesian Neural Network [71.16277790708529]
本稿では,人間の動作予測のための確率モデルを提案する。
我々のモデルは、観測された動きシーケンスが与えられたときに、いくつかの将来の動きを生成することができる。
我々は、大規模ベンチマークデータセットHuman3.6mに対して、我々のアプローチを広範囲に検証した。
論文 参考訳(メタデータ) (2021-07-14T09:05:33Z) - Leveraging Neural Network Gradients within Trajectory Optimization for
Proactive Human-Robot Interactions [32.57882479132015]
本稿では, トラジェクトリ最適化(TO)の解釈可能性と柔軟性を, 最先端の人間のトラジェクトリ予測モデルの予測能力と融合する枠組みを提案する。
我々は,最大10人の歩行者の群集を安全に効率的に移動させるロボットを必要とするマルチエージェントシナリオにおいて,我々のアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2020-12-02T08:43:36Z) - Risk-Sensitive Sequential Action Control with Multi-Modal Human
Trajectory Forecasting for Safe Crowd-Robot Interaction [55.569050872780224]
本稿では,リスクに敏感な最適制御に基づく安全な群集ロボットインタラクションのためのオンラインフレームワークを提案し,そのリスクをエントロピーリスク尺度でモデル化する。
私たちのモジュラーアプローチは、クラウドとロボットの相互作用を学習ベースの予測とモデルベースの制御に分離します。
シミュレーション研究と実世界の実験により、このフレームワークは、現場にいる50人以上の人間との衝突を避けながら、安全で効率的なナビゲーションを実現することができることが示された。
論文 参考訳(メタデータ) (2020-09-12T02:02:52Z) - Multimodal Deep Generative Models for Trajectory Prediction: A
Conditional Variational Autoencoder Approach [34.70843462687529]
本研究では,人間の行動予測に対する条件付き変分オートエンコーダアプローチに関する自己完結型チュートリアルを提供する。
本チュートリアルの目的は,人間の行動予測における最先端の手法の分類をレビューし,構築することである。
論文 参考訳(メタデータ) (2020-08-10T03:18:27Z) - Learning Compliance Adaptation in Contact-Rich Manipulation [81.40695846555955]
本稿では,コンタクトリッチタスクに必要な力プロファイルの予測モデルを学習するための新しいアプローチを提案する。
このアプローチは、双方向Gated Recurrent Units (Bi-GRU) に基づく異常検出と適応力/インピーダンス制御を組み合わせたものである。
論文 参考訳(メタデータ) (2020-05-01T05:23:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。