論文の概要: An EM Gradient Algorithm for Mixture Models with Components Derived from the Manly Transformation
- arxiv url: http://arxiv.org/abs/2410.00848v1
- Date: Tue, 1 Oct 2024 16:31:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-05 03:46:09.199356
- Title: An EM Gradient Algorithm for Mixture Models with Components Derived from the Manly Transformation
- Title(参考訳): マンリー変換から導出した成分混合モデルのEM勾配アルゴリズム
- Authors: Katharine M. Clark, Paul D. McNicholas,
- Abstract要約: 彼らのEMアルゴリズムは、MステップのNelder-Mead最適化を利用してスキューパラメータを更新する。
モデルパラメータの初期推定が良好である場合には,ニュートン法の一段階を用いて,別のEMアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 1.0435741631709405
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Zhu and Melnykov (2018) develop a model to fit mixture models when the components are derived from the Manly transformation. Their EM algorithm utilizes Nelder-Mead optimization in the M-step to update the skew parameter, $\boldsymbol{\lambda}_g$. An alternative EM gradient algorithm is proposed, using one step of Newton's method, when initial estimates for the model parameters are good.
- Abstract(参考訳): Zhu and Melnykov (2018) は、成分がマンリー変換から導出されるときの混合モデルに適合するモデルを開発した。
彼らのEMアルゴリズムは、MステップのNelder-Mead最適化を利用して、スキューパラメータである$\boldsymbol{\lambda}_g$を更新する。
モデルパラメータの初期推定が良好である場合には,ニュートン法の一段階を用いて,別のEM勾配アルゴリズムを提案する。
関連論文リスト
- MARS: Unleashing the Power of Variance Reduction for Training Large Models [56.47014540413659]
Adam、Adam、およびそれらの変種のような大規模な勾配アルゴリズムは、この種のトレーニングの開発の中心となっている。
本稿では,事前条件付き勾配最適化手法と,スケールドモーメント手法による分散低減を両立させる枠組みを提案する。
論文 参考訳(メタデータ) (2024-11-15T18:57:39Z) - Adaptive Fuzzy C-Means with Graph Embedding [84.47075244116782]
ファジィクラスタリングアルゴリズムは、大まかに2つの主要なグループに分類できる: ファジィC平均法(FCM)と混合モデルに基づく方法。
本稿では,FCMを用いたクラスタリングモデルを提案する。
論文 参考訳(メタデータ) (2024-05-22T08:15:50Z) - Automatic Parameterization for Aerodynamic Shape Optimization via Deep
Geometric Learning [60.69217130006758]
空力形状最適化のための形状パラメータ化を完全に自動化する2つの深層学習モデルを提案する。
どちらのモデルも、深い幾何学的学習を通じてパラメータ化し、人間の事前知識を学習された幾何学的パターンに埋め込むように最適化されている。
2次元翼の形状最適化実験を行い、2つのモデルに適用可能なシナリオについて論じる。
論文 参考訳(メタデータ) (2023-05-03T13:45:40Z) - A Control Theoretic Framework for Adaptive Gradient Optimizers in
Machine Learning [0.6526824510982802]
適応勾配法はディープニューラルネットワークの最適化に人気がある。
最近の例にはAdaGradとAdamがある。
我々は適応的勾配法のための汎用的なフレームワークを開発する。
論文 参考訳(メタデータ) (2022-06-04T17:55:33Z) - Learning Equivariant Energy Based Models with Equivariant Stein
Variational Gradient Descent [80.73580820014242]
本稿では,確率モデルに対称性を組み込むことにより,確率密度の効率的なサンプリングと学習の問題に焦点をあてる。
まず、等変シュタイン変分勾配Descentアルゴリズムを導入する。これは、対称性を持つ密度からサンプリングするスタインの同一性に基づく同変サンプリング法である。
我々はエネルギーベースモデルのトレーニングを改善し、スケールアップする新しい方法を提案する。
論文 参考訳(メタデータ) (2021-06-15T01:35:17Z) - Incorporating Transformer and LSTM to Kalman Filter with EM algorithm
for state estimation [0.0]
筆者らは,Long-Short Term Memory Network (LSTM), Transformer, EM-KFアルゴリズムを組み合わせた状態推定手法を提案する。
線形移動ロボットモデルのシミュレーションにより,新しい手法がより正確であることを示す。
論文 参考訳(メタデータ) (2021-05-01T13:52:28Z) - Using machine learning to correct model error in data assimilation and
forecast applications [0.0]
本稿では,既存の知識ベースモデルの誤りを訂正するために,この手法を提案する。
結果として得られるサロゲートモデルは、元の(知識ベース)モデルとMLモデルとのハイブリッドモデルである。
DAのハイブリッドサロゲートモデルを用いることで、元のモデルよりもはるかに優れた分析が得られる。
論文 参考訳(メタデータ) (2020-10-23T18:30:45Z) - A Rigorous Link Between Self-Organizing Maps and Gaussian Mixture Models [78.6363825307044]
本研究は、自己組織化マップ(SOM)とガウス混合モデル(GMM)の関係を数学的に扱うものである。
我々は,エネルギーベースSOMモデルを勾配勾配下降と解釈できることを示した。
このリンクはSOMsを生成確率モデルとして扱うことができ、SOMsを使用して外れ値を検出したりサンプリングしたりするための正式な正当性を与える。
論文 参考訳(メタデータ) (2020-09-24T14:09:04Z) - Combining data assimilation and machine learning to infer unresolved
scale parametrisation [0.0]
近年、動的数値モデルにおいて、未解決プロセスのデータ駆動パラメトリクスを考案する機械学習が提案されている。
我々のゴールは、高分解能シミュレーションの使用を超えて、直接データを用いてMLベースのパラメーターを訓練することである。
いずれの場合も、ハイブリッドモデルは、切り落とされたモデルよりも優れたスキルで予測を得られることを示す。
論文 参考訳(メタデータ) (2020-09-09T14:12:11Z) - Model Fusion with Kullback--Leibler Divergence [58.20269014662046]
異種データセットから学習した後続分布を融合する手法を提案する。
我々のアルゴリズムは、融合モデルと個々のデータセット後部の両方に対する平均場仮定に依存している。
論文 参考訳(メタデータ) (2020-07-13T03:27:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。