Entropy contraction of the Gibbs sampler under log-concavity
- URL: http://arxiv.org/abs/2410.00858v1
- Date: Tue, 1 Oct 2024 16:50:36 GMT
- Title: Entropy contraction of the Gibbs sampler under log-concavity
- Authors: Filippo Ascolani, Hugo Lavenant, Giacomo Zanella,
- Abstract summary: We show that the random scan Gibbs sampler contracts in relative entropy and provide a sharp characterization of the associated contraction rate.
Our techniques are versatile and extend to Metropolis-within-Gibbs schemes and the Hit-and-Run algorithm.
- Score: 0.16385815610837165
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Gibbs sampler (a.k.a. Glauber dynamics and heat-bath algorithm) is a popular Markov Chain Monte Carlo algorithm which iteratively samples from the conditional distributions of a probability measure $\pi$ of interest. Under the assumption that $\pi$ is strongly log-concave, we show that the random scan Gibbs sampler contracts in relative entropy and provide a sharp characterization of the associated contraction rate. Assuming that evaluating conditionals is cheap compared to evaluating the joint density, our results imply that the number of full evaluations of $\pi$ needed for the Gibbs sampler to mix grows linearly with the condition number and is independent of the dimension. If $\pi$ is non-strongly log-concave, the convergence rate in entropy degrades from exponential to polynomial. Our techniques are versatile and extend to Metropolis-within-Gibbs schemes and the Hit-and-Run algorithm. A comparison with gradient-based schemes and the connection with the optimization literature are also discussed.
Related papers
- Path integral Monte Carlo in a discrete variable representation with Gibbs sampling: dipolar planar rotor chain [0.0]
We propose a Path Integral Monte Carlo (PIMC) approach based on discretized continuous degrees of freedom and rejection-free Gibbs sampling.
We show that using Gibbs sampling is advantageous compared to traditional Metroplolis-Hastings rejection importance sampling.
arXiv Detail & Related papers (2024-10-17T15:04:39Z) - Closed-form Filtering for Non-linear Systems [83.91296397912218]
We propose a new class of filters based on Gaussian PSD Models, which offer several advantages in terms of density approximation and computational efficiency.
We show that filtering can be efficiently performed in closed form when transitions and observations are Gaussian PSD Models.
Our proposed estimator enjoys strong theoretical guarantees, with estimation error that depends on the quality of the approximation and is adaptive to the regularity of the transition probabilities.
arXiv Detail & Related papers (2024-02-15T08:51:49Z) - Provably Efficient High-Dimensional Bandit Learning with Batched
Feedbacks [93.00280593719513]
We study high-dimensional multi-armed contextual bandits with batched feedback where the $T$ steps of online interactions are divided into $L$ batches.
In specific, each batch collects data according to a policy that depends on previous batches and the rewards are revealed only at the end of the batch.
Our algorithm achieves regret bounds comparable to those in fully sequential setting with only $mathcalO( log T)$ batches.
arXiv Detail & Related papers (2023-11-22T06:06:54Z) - Linear Complexity Gibbs Sampling for Generalized Labeled Multi-Bernoulli
Filtering [4.186094981300538]
Generalized Labeled Multi-Bernoulli (GLMB) densities arise in a host of multi-object system applications analogous to Gaussians in single-object filtering.
We propose a tempered Gibbs sampler that exploits the structure of the GLMB filtering density to achieve an $mathcalO(T(P+M))$ complexity.
This innovation enables the GLMB filter implementation to be reduced from an $mathcalO(TP2M)$ complexity to $mathcalO(T(P+M+log T)+PM)
arXiv Detail & Related papers (2022-11-29T09:26:43Z) - Convergence for score-based generative modeling with polynomial
complexity [9.953088581242845]
We prove the first convergence guarantees for the core mechanic behind Score-based generative modeling.
Compared to previous works, we do not incur error that grows exponentially in time or that suffers from a curse of dimensionality.
We show that a predictor-corrector gives better convergence than using either portion alone.
arXiv Detail & Related papers (2022-06-13T14:57:35Z) - Mean-Square Analysis with An Application to Optimal Dimension Dependence
of Langevin Monte Carlo [60.785586069299356]
This work provides a general framework for the non-asymotic analysis of sampling error in 2-Wasserstein distance.
Our theoretical analysis is further validated by numerical experiments.
arXiv Detail & Related papers (2021-09-08T18:00:05Z) - Tightening the Dependence on Horizon in the Sample Complexity of
Q-Learning [59.71676469100807]
This work sharpens the sample complexity of synchronous Q-learning to an order of $frac|mathcalS|| (1-gamma)4varepsilon2$ for any $0varepsilon 1$.
Our finding unveils the effectiveness of vanilla Q-learning, which matches that of speedy Q-learning without requiring extra computation and storage.
arXiv Detail & Related papers (2021-02-12T14:22:05Z) - Complexity of zigzag sampling algorithm for strongly log-concave
distributions [6.336005544376984]
We study the computational complexity of zigzag sampling algorithm for strongly log-concave distributions.
We prove that the zigzag sampling algorithm achieves $varepsilon$ error in chi-square divergence with a computational cost equivalent to $Obigl.
arXiv Detail & Related papers (2020-12-21T03:10:21Z) - Faster Convergence of Stochastic Gradient Langevin Dynamics for
Non-Log-Concave Sampling [110.88857917726276]
We provide a new convergence analysis of gradient Langevin dynamics (SGLD) for sampling from a class of distributions that can be non-log-concave.
At the core of our approach is a novel conductance analysis of SGLD using an auxiliary time-reversible Markov Chain.
arXiv Detail & Related papers (2020-10-19T15:23:18Z) - Sample Complexity of Asynchronous Q-Learning: Sharper Analysis and
Variance Reduction [63.41789556777387]
Asynchronous Q-learning aims to learn the optimal action-value function (or Q-function) of a Markov decision process (MDP)
We show that the number of samples needed to yield an entrywise $varepsilon$-accurate estimate of the Q-function is at most on the order of $frac1mu_min (1-gamma)5varepsilon2+ fract_mixmu_min (1-gamma)$ up to some logarithmic factor.
arXiv Detail & Related papers (2020-06-04T17:51:00Z) - Oracle Lower Bounds for Stochastic Gradient Sampling Algorithms [39.746670539407084]
We consider the problem of sampling from a strongly log-concave density in $bbRd$.
We prove an information theoretic lower bound on the number of gradient queries of the log density needed.
arXiv Detail & Related papers (2020-02-01T23:46:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.