Steering-based randomness certification with squeezed states and
homodyne measurements
- URL: http://arxiv.org/abs/2111.06186v2
- Date: Thu, 24 Nov 2022 21:00:12 GMT
- Title: Steering-based randomness certification with squeezed states and
homodyne measurements
- Authors: Marie Ioannou and Bradley Longstaff and Mikkel V. Larsen and Jonas S.
Neergaard-Nielsen and Ulrik L. Andersen and Daniel Cavalcanti and Nicolas
Brunner and Jonatan Bohr Brask
- Abstract summary: We present a scheme for quantum randomness certification based on quantum steering.
The protocol is one-sided device independent, providing high security, but requires only states and measurements that are simple to realise on quantum optics platforms.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a scheme for quantum randomness certification based on quantum
steering. The protocol is one-sided device independent, providing high
security, but requires only states and measurements that are simple to realise
on quantum optics platforms - entangled squeezed vacuum states and homodyne
detection. This ease of implementation is demonstrated by certifying randomness
in existing experimental data and implies that giga-hertz random bit rates
should be attainable with current technology. Furthermore, the steering-based
setting represents the closest to full device independence that can be achieved
using purely Gaussian states and measurements.
Related papers
- Certifying classes of $d$-outcome measurements with quantum steering [49.1574468325115]
We provide a construction of a family of steering inequalities tailored to large classes of $d$-outcomes projective measurements.
We prove that the maximal quantum violation of those inequalities can be used for certification of those measurements and the maximally entangled state of two qudits.
arXiv Detail & Related papers (2024-10-27T15:32:53Z) - Efficient and Device-Independent Active Quantum State Certification [0.0]
Entangled quantum states are essential ingredients for many quantum technologies, but they must be validated before they are used.
Most existing approaches are based on preparing an ensemble of nominally identical and independent (IID) quantum states, and then measuring each copy of the ensemble.
We experimentally implement quantum state certification (QSC), which measures only a subset of the ensemble, certifying the fidelity of the remaining states.
arXiv Detail & Related papers (2024-07-18T21:54:13Z) - Measurement-Device-Independent Detection of Beyond-Quantum State [53.64687146666141]
We propose a measurement-device-independent (MDI) test for beyond-quantum state detection.
We discuss the importance of tomographic completeness of the input sets to the detection.
arXiv Detail & Related papers (2023-12-11T06:40:13Z) - Single-photon-memory measurement-device-independent quantum secure
direct communication [63.75763893884079]
Quantum secure direct communication (QSDC) uses the quantum channel to transmit information reliably and securely.
In order to eliminate the security loopholes resulting from practical detectors, the measurement-device-independent (MDI) QSDC protocol has been proposed.
We propose a single-photon-memory MDI QSDC protocol (SPMQC) for dispensing with high-performance quantum memory.
arXiv Detail & Related papers (2022-12-12T02:23:57Z) - Quantum randomness certification with untrusted measurements and few
probe states [0.0]
We present a scheme for quantum random-number generation from an untrusted measurement device and a trusted source.
No assumptions about noise or imperfections in the measurement are required, and the scheme is simple to implement with existing technology.
We show that randomness can be certified in the presence of both Gaussian additive noise and non-Gaussian imperfections.
arXiv Detail & Related papers (2022-10-24T21:18:22Z) - Sample-efficient device-independent quantum state verification and
certification [68.8204255655161]
Authentication of quantum sources is a crucial task in building reliable and efficient protocols for quantum-information processing.
We develop a systematic approach to device-independent verification of quantum states free of IID assumptions in the finite copy regime.
We show that device-independent verification can be performed with optimal sample efficiency.
arXiv Detail & Related papers (2021-05-12T17:48:04Z) - On the optimal certification of von Neumann measurements [55.41644538483948]
certification of quantum measurements can be viewed as the extension of quantum hypotheses testing.
We show the connection between the certification of quantum channels or von Neumann measurements and the notion of $q$-numerical range.
arXiv Detail & Related papers (2020-09-14T22:38:23Z) - Certified Randomness From Steering Using Sequential Measurements [0.0]
A single entangled two-qubit pure state can be used to produce arbitrary amounts of certified randomness.
Motivated by these difficulties in the device-independent setting, we consider the scenario of one-sided device independence.
We show how certain aspects of previous work can be adapted to this scenario and provide theoretical bounds on the amount of randomness which can be certified.
arXiv Detail & Related papers (2020-08-03T08:18:29Z) - Gaussian conversion protocols for cubic phase state generation [104.23865519192793]
Universal quantum computing with continuous variables requires non-Gaussian resources.
The cubic phase state is a non-Gaussian state whose experimental implementation has so far remained elusive.
We introduce two protocols that allow for the conversion of a non-Gaussian state to a cubic phase state.
arXiv Detail & Related papers (2020-07-07T09:19:49Z) - Noisy pre-processing facilitating a photonic realisation of
device-independent quantum key distribution [0.0]
Device-independent quantum key distribution provides security even when the equipment used to communicate over the quantum channel is largely uncharacterized.
A central obstacle in photonic implementations is that the global detection efficiency must be above a certain threshold.
We here propose a method to significantly relax this threshold, while maintaining provable device-independent security.
arXiv Detail & Related papers (2020-05-26T20:22:43Z) - Semi-device-independent certification of independent quantum state and
measurement devices [0.0]
Certifying that quantum devices behave as intended is crucial for quantum information science.
The experimenter assumes the independence of the devices and knowledge of the unambiguous space dimension.
The presented methods can readily be implemented in experiments.
arXiv Detail & Related papers (2020-03-08T22:15:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.