論文の概要: Investigating the Synergistic Effects of Dropout and Residual Connections on Language Model Training
- arxiv url: http://arxiv.org/abs/2410.01019v1
- Date: Tue, 1 Oct 2024 19:27:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 23:40:11.811268
- Title: Investigating the Synergistic Effects of Dropout and Residual Connections on Language Model Training
- Title(参考訳): 言語モデル学習におけるドロップアウトと残留接続の相乗効果の検討
- Authors: Qingyang Li, Weimao Ke,
- Abstract要約: 本稿では,言語モデル学習における過剰適合軽減におけるドロップアウト手法の意義について考察する。
言語モデリングの文脈における個々の層と残余接続に対する変数のドロップアウト率の影響について、包括的な調査を行っている。
- 参考スコア(独自算出の注目度): 6.198560135369579
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper examines the pivotal role of dropout techniques in mitigating overfitting in language model training. It conducts a comprehensive investigation into the influence of variable dropout rates on both individual layers and residual connections within the context of language modeling. Our study conducts training of a decoder implementation on the classic Tiny Shakespeare data to examine the effects of the adjustments on training efficiency and validation error. Results not only confirm the benefits of dropout for regularization and residuals for convergence, but also reveal their interesting interactions. There exists an important trade-off between the depth of residual connections and the dropout on these connections for optimal deep neural network convergence and generalization.
- Abstract(参考訳): 本稿では,言語モデル学習における過剰適合軽減におけるドロップアウト手法の意義について考察する。
言語モデリングの文脈における個々の層と残余接続に対する変数のドロップアウト率の影響について、包括的な調査を行っている。
本研究は,古典的なTiny Shakespeareデータに対するデコーダ実装のトレーニングを行い,トレーニング効率と検証誤差に対する調整の効果について検討する。
結果は、正規化のためのドロップアウトの利点と収束のための残差を確認するだけでなく、興味深い相互作用を明らかにする。
残差接続の深さとこれらの接続へのドロップアウトの間には、最適なディープニューラルネットワーク収束と一般化のための重要なトレードオフが存在する。
関連論文リスト
- Dissecting Representation Misalignment in Contrastive Learning via Influence Function [15.28417468377201]
コントラスト損失に対する拡張影響関数 (ECIF) を導入し, コントラスト損失に対する影響関数について検討した。
ECIFは正と負の両方のサンプルを考慮し、対照的な学習モデルの閉形式近似を提供する。
我々はECIFに基づいて,データ評価,誤修正検出,誤予測トレースバックタスクのための一連のアルゴリズムを開発した。
論文 参考訳(メタデータ) (2024-11-18T15:45:41Z) - Most Influential Subset Selection: Challenges, Promises, and Beyond [9.479235005673683]
我々は,最も集団的影響の大きいトレーニングサンプルのサブセットを特定することを目的とした,MISS(Most Influential Subset Selection)問題について検討する。
我々は、MISにおける一般的なアプローチを包括的に分析し、その強みと弱点を解明する。
本稿では,これらを反復的に適用した適応バージョンが,試料間の相互作用を効果的に捕捉できることを実証する。
論文 参考訳(メタデータ) (2024-09-25T20:00:23Z) - Improving Network Interpretability via Explanation Consistency Evaluation [56.14036428778861]
本稿では、より説明可能なアクティベーションヒートマップを取得し、同時にモデル性能を向上させるフレームワークを提案する。
具体的には、モデル学習において、トレーニングサンプルを適応的に重み付けするために、新しいメトリクス、すなわち説明整合性を導入する。
そこで,本フレームワークは,これらのトレーニングサンプルに深い注意を払ってモデル学習を促進する。
論文 参考訳(メタデータ) (2024-08-08T17:20:08Z) - The mechanistic basis of data dependence and abrupt learning in an
in-context classification task [0.3626013617212666]
本研究では,言語固有の特定の分布特性が,2種類の学習のトレードオフや同時出現を制御していることを示す。
インコンテキスト学習は、誘導ヘッドの突然の出現によって駆動され、その後、インウェイト学習と競合する。
注意に基づくネットワークの急激な遷移は、ICLを実現するのに必要な多層演算の特定の連鎖によって生じると提案する。
論文 参考訳(メタデータ) (2023-12-03T20:53:41Z) - Measuring and Improving Attentiveness to Partial Inputs with Counterfactuals [91.59906995214209]
我々は,新しい評価手法であるCAT(Facterfactual Attentiveness Test)を提案する。
CATは、入力の一部を別の例から別の例に置き換えることで、予測を変更する注意深いモデルを期待することで、反事実を使用する。
実験データの精度が向上する一方, GPT3 は実演回数の増加により注意力の低下がみられた。
論文 参考訳(メタデータ) (2023-11-16T06:27:35Z) - CausalDialogue: Modeling Utterance-level Causality in Conversations [83.03604651485327]
クラウドソーシングを通じて、CausalDialogueという新しいデータセットをコンパイルし、拡張しました。
このデータセットは、有向非巡回グラフ(DAG)構造内に複数の因果効果対を含む。
ニューラル会話モデルの訓練における発話レベルにおける因果性の影響を高めるために,Exponential Average Treatment Effect (ExMATE) と呼ばれる因果性強化手法を提案する。
論文 参考訳(メタデータ) (2022-12-20T18:31:50Z) - Initial Study into Application of Feature Density and
Linguistically-backed Embedding to Improve Machine Learning-based
Cyberbullying Detection [54.83707803301847]
この研究は、自動サイバーバブル検出に関するKaggleコンペティションで提供されたFormspringデータセットで実施された。
本研究は,サイバブリング検出におけるニューラルネットワークの有効性と分類器性能と特徴密度の相関性を確認した。
論文 参考訳(メタデータ) (2022-06-04T03:17:15Z) - Counterfactual Adversarial Learning with Representation Interpolation [11.843735677432166]
本稿では,逆境因果関係の観点から問題に取り組むために,対人関係訓練の枠組みを導入する。
実験により、CATは異なる下流タスク間でSOTAよりも大幅にパフォーマンスが向上することが示された。
論文 参考訳(メタデータ) (2021-09-10T09:23:08Z) - Unsupervised neural adaptation model based on optimal transport for
spoken language identification [54.96267179988487]
トレーニングセットとテストセット間の音響音声の統計的分布のミスマッチにより,音声言語識別(SLID)の性能が大幅に低下する可能性がある。
SLIDの分布ミスマッチ問題に対処するために,教師なしニューラル適応モデルを提案する。
論文 参考訳(メタデータ) (2020-12-24T07:37:19Z) - Interpreting and Boosting Dropout from a Game-Theoretic View [40.56832661867609]
本稿では,ゲーム理論的相互作用の観点から,ドロップアウト操作の有用性を理解し,改善することを目的とする。
深層ニューラルネットワーク(DNN)の入力変数間の相互作用の強さを抑えることができることを示す。
論文 参考訳(メタデータ) (2020-09-24T14:39:42Z) - Bridging Mode Connectivity in Loss Landscapes and Adversarial Robustness [97.67477497115163]
我々は、モード接続を用いて、ディープニューラルネットワークの対角的堅牢性を研究する。
実験では、異なるネットワークアーキテクチャやデータセットに適用される様々な種類の敵攻撃について取り上げる。
以上の結果から,モード接続は,敵の強靭性を評価・改善するための総合的なツールであり,実用的な手段であることが示唆された。
論文 参考訳(メタデータ) (2020-04-30T19:12:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。