GPTreeO: An R package for continual regression with dividing local Gaussian processes
- URL: http://arxiv.org/abs/2410.01024v2
- Date: Thu, 17 Oct 2024 16:45:16 GMT
- Title: GPTreeO: An R package for continual regression with dividing local Gaussian processes
- Authors: Timo Braun, Anders Kvellestad, Riccardo De Bin,
- Abstract summary: We introduce GPTreeO, a flexible R package for scalable Gaussian process (GP) regression.
GPTreeO builds upon the Dividing Local Gaussian Processes (DLGP) algorithm, in which a binary tree of local GP regressors is dynamically constructed.
We conduct a sensitivity analysis to show how GPTreeO's features impact the regression performance in a continual learning setting.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce GPTreeO, a flexible R package for scalable Gaussian process (GP) regression, particularly tailored to continual learning problems. GPTreeO builds upon the Dividing Local Gaussian Processes (DLGP) algorithm, in which a binary tree of local GP regressors is dynamically constructed using a continual stream of input data. In GPTreeO we extend the original DLGP algorithm by allowing continual optimisation of the GP hyperparameters, incorporating uncertainty calibration, and introducing new strategies for how the local partitions are created. Moreover, the modular code structure allows users to interface their favourite GP library to perform the local GP regression in GPTreeO. The flexibility of GPTreeO gives the user fine-grained control of the balance between computational speed, accuracy, stability and smoothness. We conduct a sensitivity analysis to show how GPTreeO's configurable features impact the regression performance in a continual learning setting.
Related papers
- Domain Invariant Learning for Gaussian Processes and Bayesian
Exploration [39.83530605880014]
We propose a domain invariant learning algorithm for Gaussian processes (DIL-GP) with a min-max optimization on the likelihood.
Numerical experiments demonstrate the superiority of DIL-GP for predictions on several synthetic and real-world datasets.
arXiv Detail & Related papers (2023-12-18T16:13:34Z) - Interactive Segmentation as Gaussian Process Classification [58.44673380545409]
Click-based interactive segmentation (IS) aims to extract the target objects under user interaction.
Most of the current deep learning (DL)-based methods mainly follow the general pipelines of semantic segmentation.
We propose to formulate the IS task as a Gaussian process (GP)-based pixel-wise binary classification model on each image.
arXiv Detail & Related papers (2023-02-28T14:01:01Z) - Scaling Gaussian Process Optimization by Evaluating a Few Unique
Candidates Multiple Times [119.41129787351092]
We show that sequential black-box optimization based on GPs can be made efficient by sticking to a candidate solution for multiple evaluation steps.
We modify two well-established GP-Opt algorithms, GP-UCB and GP-EI to adapt rules from batched GP-Opt.
arXiv Detail & Related papers (2022-01-30T20:42:14Z) - Robust and Adaptive Temporal-Difference Learning Using An Ensemble of
Gaussian Processes [70.80716221080118]
The paper takes a generative perspective on policy evaluation via temporal-difference (TD) learning.
The OS-GPTD approach is developed to estimate the value function for a given policy by observing a sequence of state-reward pairs.
To alleviate the limited expressiveness associated with a single fixed kernel, a weighted ensemble (E) of GP priors is employed to yield an alternative scheme.
arXiv Detail & Related papers (2021-12-01T23:15:09Z) - Non-Gaussian Gaussian Processes for Few-Shot Regression [71.33730039795921]
We propose an invertible ODE-based mapping that operates on each component of the random variable vectors and shares the parameters across all of them.
NGGPs outperform the competing state-of-the-art approaches on a diversified set of benchmarks and applications.
arXiv Detail & Related papers (2021-10-26T10:45:25Z) - Incremental Ensemble Gaussian Processes [53.3291389385672]
We propose an incremental ensemble (IE-) GP framework, where an EGP meta-learner employs an it ensemble of GP learners, each having a unique kernel belonging to a prescribed kernel dictionary.
With each GP expert leveraging the random feature-based approximation to perform online prediction and model update with it scalability, the EGP meta-learner capitalizes on data-adaptive weights to synthesize the per-expert predictions.
The novel IE-GP is generalized to accommodate time-varying functions by modeling structured dynamics at the EGP meta-learner and within each GP learner.
arXiv Detail & Related papers (2021-10-13T15:11:25Z) - GPflux: A Library for Deep Gaussian Processes [31.207566616050574]
GPflux is a Python library for Bayesian deep learning with a strong emphasis on deep Gaussian processes (DGPs)
It is compatible with and built on top of the Keras deep learning eco-system.
GPflux relies on GPflow for most of its GP objects and operations, which makes it an efficient, modular and extendable library.
arXiv Detail & Related papers (2021-04-12T17:41:18Z) - GP-Tree: A Gaussian Process Classifier for Few-Shot Incremental Learning [23.83961717568121]
GP-Tree is a novel method for multi-class classification with Gaussian processes and deep kernel learning.
We develop a tree-based hierarchical model in which each internal node fits a GP to the data.
Our method scales well with both the number of classes and data size.
arXiv Detail & Related papers (2021-02-15T22:16:27Z) - Gaussian Process-based Min-norm Stabilizing Controller for
Control-Affine Systems with Uncertain Input Effects and Dynamics [90.81186513537777]
We propose a novel compound kernel that captures the control-affine nature of the problem.
We show that this resulting optimization problem is convex, and we call it Gaussian Process-based Control Lyapunov Function Second-Order Cone Program (GP-CLF-SOCP)
arXiv Detail & Related papers (2020-11-14T01:27:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.