Statistical inference on black-box generative models in the data kernel perspective space
- URL: http://arxiv.org/abs/2410.01106v2
- Date: Sun, 16 Feb 2025 00:52:37 GMT
- Title: Statistical inference on black-box generative models in the data kernel perspective space
- Authors: Hayden Helm, Aranyak Acharyya, Brandon Duderstadt, Youngser Park, Carey E. Priebe,
- Abstract summary: We extend results on representations of black-box generative models to model-level statistical inference tasks.
We demonstrate that the model-level representations are effective for multiple inference tasks.
- Score: 10.948308354932639
- License:
- Abstract: Generative models are capable of producing human-expert level content across a variety of topics and domains. As the impact of generative models grows, it is necessary to develop statistical methods to understand collections of available models. These methods are particularly important in settings where the user may not have access to information related to a model's pre-training data, weights, or other relevant model-level covariates. In this paper we extend recent results on representations of black-box generative models to model-level statistical inference tasks. We demonstrate that the model-level representations are effective for multiple inference tasks.
Related papers
- Consistent estimation of generative model representations in the data kernel perspective space [11.990746437073694]
Generative models, such as large language models and text-to-image diffusion models, produce relevant information when presented a query.
Different models may produce different information when presented the same query.
We present novel theoretical results for embedding-based representations of generative models in the context of a set of queries.
arXiv Detail & Related papers (2024-09-25T19:35:58Z) - Learning-based Models for Vulnerability Detection: An Extensive Study [3.1317409221921144]
We extensively and comprehensively investigate two types of state-of-the-art learning-based approaches.
We experimentally demonstrate the priority of sequence-based models and the limited abilities of both graph-based models.
arXiv Detail & Related papers (2024-08-14T13:01:30Z) - Reinforcing Pre-trained Models Using Counterfactual Images [54.26310919385808]
This paper proposes a novel framework to reinforce classification models using language-guided generated counterfactual images.
We identify model weaknesses by testing the model using the counterfactual image dataset.
We employ the counterfactual images as an augmented dataset to fine-tune and reinforce the classification model.
arXiv Detail & Related papers (2024-06-19T08:07:14Z) - Knowledge Fusion By Evolving Weights of Language Models [5.354527640064584]
This paper examines the approach of integrating multiple models into a unified model.
We propose a knowledge fusion method named Evolver, inspired by evolutionary algorithms.
arXiv Detail & Related papers (2024-06-18T02:12:34Z) - Has Your Pretrained Model Improved? A Multi-head Posterior Based
Approach [25.927323251675386]
We leverage the meta-features associated with each entity as a source of worldly knowledge and employ entity representations from the models.
We propose using the consistency between these representations and the meta-features as a metric for evaluating pre-trained models.
Our method's effectiveness is demonstrated across various domains, including models with relational datasets, large language models and image models.
arXiv Detail & Related papers (2024-01-02T17:08:26Z) - Representer Point Selection for Explaining Regularized High-dimensional
Models [105.75758452952357]
We introduce a class of sample-based explanations we term high-dimensional representers.
Our workhorse is a novel representer theorem for general regularized high-dimensional models.
We study the empirical performance of our proposed methods on three real-world binary classification datasets and two recommender system datasets.
arXiv Detail & Related papers (2023-05-31T16:23:58Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [51.8162883997512]
Fine-tuning pre-trained language models has become the prevalent paradigm for building downstream NLP models.
This creates a barrier to fusing knowledge across individual models to yield a better single model.
We propose a dataless knowledge fusion method that merges models in their parameter space.
arXiv Detail & Related papers (2022-12-19T20:46:43Z) - An Ample Approach to Data and Modeling [1.0152838128195467]
We describe a framework for modeling how models can be built that integrates concepts and methods from a wide range of fields.
The reference M* meta model framework is presented, which relies critically in associating whole datasets and respective models in terms of a strict equivalence relation.
Several considerations about how the developed framework can provide insights about data clustering, complexity, collaborative research, deep learning, and creativity are then presented.
arXiv Detail & Related papers (2021-10-05T01:26:09Z) - Model-agnostic multi-objective approach for the evolutionary discovery
of mathematical models [55.41644538483948]
In modern data science, it is more interesting to understand the properties of the model, which parts could be replaced to obtain better results.
We use multi-objective evolutionary optimization for composite data-driven model learning to obtain the algorithm's desired properties.
arXiv Detail & Related papers (2021-07-07T11:17:09Z) - Design of Dynamic Experiments for Black-Box Model Discrimination [72.2414939419588]
Consider a dynamic model discrimination setting where we wish to chose: (i) what is the best mechanistic, time-varying model and (ii) what are the best model parameter estimates.
For rival mechanistic models where we have access to gradient information, we extend existing methods to incorporate a wider range of problem uncertainty.
We replace these black-box models with Gaussian process surrogate models and thereby extend the model discrimination setting to additionally incorporate rival black-box model.
arXiv Detail & Related papers (2021-02-07T11:34:39Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
Current autoencoder-based disentangled representation learning methods achieve disentanglement by penalizing the ( aggregate) posterior to encourage statistical independence of the latent factors.
We present a novel multi-stage modeling approach where the disentangled factors are first learned using a penalty-based disentangled representation learning method.
Then, the low-quality reconstruction is improved with another deep generative model that is trained to model the missing correlated latent variables.
arXiv Detail & Related papers (2020-10-25T18:51:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.