Knowledge Fusion By Evolving Weights of Language Models
- URL: http://arxiv.org/abs/2406.12208v1
- Date: Tue, 18 Jun 2024 02:12:34 GMT
- Title: Knowledge Fusion By Evolving Weights of Language Models
- Authors: Guodong Du, Jing Li, Hanting Liu, Runhua Jiang, Shuyang Yu, Yifei Guo, Sim Kuan Goh, Ho-Kin Tang,
- Abstract summary: This paper examines the approach of integrating multiple models into a unified model.
We propose a knowledge fusion method named Evolver, inspired by evolutionary algorithms.
- Score: 5.354527640064584
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fine-tuning pre-trained language models, particularly large language models, demands extensive computing resources and can result in varying performance outcomes across different domains and datasets. This paper examines the approach of integrating multiple models from diverse training scenarios into a unified model. This unified model excels across various data domains and exhibits the ability to generalize well on out-of-domain data. We propose a knowledge fusion method named Evolver, inspired by evolutionary algorithms, which does not need further training or additional training data. Specifically, our method involves aggregating the weights of different language models into a population and subsequently generating offspring models through mutation and crossover operations. These offspring models are then evaluated against their parents, allowing for the preservation of those models that show enhanced performance on development datasets. Importantly, our model evolving strategy can be seamlessly integrated with existing model merging frameworks, offering a versatile tool for model enhancement. Experimental results on mainstream language models (i.e., encoder-only, decoder-only, encoder-decoder) reveal that Evolver outperforms previous state-of-the-art models by large margins. The code is publicly available at {https://github.com/duguodong7/model-evolution}.
Related papers
- Exploring Model Kinship for Merging Large Language Models [52.01652098827454]
We introduce model kinship, the degree of similarity or relatedness between Large Language Models.
We find that there is a certain relationship between model kinship and the performance gains after model merging.
We propose a new model merging strategy: Top-k Greedy Merging with Model Kinship, which can yield better performance on benchmark datasets.
arXiv Detail & Related papers (2024-10-16T14:29:29Z) - EvolveDirector: Approaching Advanced Text-to-Image Generation with Large Vision-Language Models [36.576853882830896]
We introduce EvolveDirector to train a text-to-image generation model comparable to advanced models using publicly available resources.
This framework interacts with advanced models through their public APIs to obtain text-image data pairs to train a base model.
We leverage pre-trained large vision-language models (VLMs) to guide the evolution of the base model.
arXiv Detail & Related papers (2024-10-09T17:52:28Z) - Embedding-based statistical inference on generative models [10.948308354932639]
We extend results related to embedding-based representations of generative models to classical statistical inference settings.
We demonstrate that using the perspective space as the basis of a notion of "similar" is effective for multiple model-level inference tasks.
arXiv Detail & Related papers (2024-10-01T22:28:39Z) - Data-Juicer Sandbox: A Comprehensive Suite for Multimodal Data-Model Co-development [67.55944651679864]
We present a novel sandbox suite tailored for integrated data-model co-development.
This sandbox provides a comprehensive experimental platform, enabling rapid iteration and insight-driven refinement of both data and models.
We also uncover fruitful insights gleaned from exhaustive benchmarks, shedding light on the critical interplay between data quality, diversity, and model behavior.
arXiv Detail & Related papers (2024-07-16T14:40:07Z) - DevBench: A multimodal developmental benchmark for language learning [0.34129029452670606]
We introduce DevBench, a benchmark for evaluating vision-language models on tasks and behavioral data.
We show that DevBench provides a benchmark for comparing models to human language development.
These comparisons highlight ways in which model and human language learning processes diverge.
arXiv Detail & Related papers (2024-06-14T17:49:41Z) - Has Your Pretrained Model Improved? A Multi-head Posterior Based
Approach [25.927323251675386]
We leverage the meta-features associated with each entity as a source of worldly knowledge and employ entity representations from the models.
We propose using the consistency between these representations and the meta-features as a metric for evaluating pre-trained models.
Our method's effectiveness is demonstrated across various domains, including models with relational datasets, large language models and image models.
arXiv Detail & Related papers (2024-01-02T17:08:26Z) - StableLLaVA: Enhanced Visual Instruction Tuning with Synthesized
Image-Dialogue Data [129.92449761766025]
We propose a novel data collection methodology that synchronously synthesizes images and dialogues for visual instruction tuning.
This approach harnesses the power of generative models, marrying the abilities of ChatGPT and text-to-image generative models.
Our research includes comprehensive experiments conducted on various datasets.
arXiv Detail & Related papers (2023-08-20T12:43:52Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [51.8162883997512]
Fine-tuning pre-trained language models has become the prevalent paradigm for building downstream NLP models.
This creates a barrier to fusing knowledge across individual models to yield a better single model.
We propose a dataless knowledge fusion method that merges models in their parameter space.
arXiv Detail & Related papers (2022-12-19T20:46:43Z) - Language Models are General-Purpose Interfaces [109.45478241369655]
We propose to use language models as a general-purpose interface to various foundation models.
A collection of pretrained encoders perceive diverse modalities (such as vision, and language)
We propose a semi-causal language modeling objective to jointly pretrain the interface and the modular encoders.
arXiv Detail & Related papers (2022-06-13T17:34:22Z) - Model-agnostic multi-objective approach for the evolutionary discovery
of mathematical models [55.41644538483948]
In modern data science, it is more interesting to understand the properties of the model, which parts could be replaced to obtain better results.
We use multi-objective evolutionary optimization for composite data-driven model learning to obtain the algorithm's desired properties.
arXiv Detail & Related papers (2021-07-07T11:17:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.