論文の概要: Augmentation through Laundering Attacks for Audio Spoof Detection
- arxiv url: http://arxiv.org/abs/2410.01108v1
- Date: Tue, 1 Oct 2024 22:34:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 23:10:15.053767
- Title: Augmentation through Laundering Attacks for Audio Spoof Detection
- Title(参考訳): 音声スポフ検出のための雷鳴攻撃による強化
- Authors: Hashim Ali, Surya Subramani, Hafiz Malik,
- Abstract要約: ASVspoof 5 Challengeは、様々な音響条件のクラウドソースデータベースを導入した。
本稿では,ASVSpoof 5データベース上での雷攻撃によるデータ拡張による音声音声検出の性能について検討する。
- 参考スコア(独自算出の注目度): 3.7090464050530705
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent text-to-speech (TTS) developments have made voice cloning (VC) more realistic, affordable, and easily accessible. This has given rise to many potential abuses of this technology, including Joe Biden's New Hampshire deepfake robocall. Several methodologies have been proposed to detect such clones. However, these methodologies have been trained and evaluated on relatively clean databases. Recently, ASVspoof 5 Challenge introduced a new crowd-sourced database of diverse acoustic conditions including various spoofing attacks and codec conditions. This paper is our submission to the ASVspoof 5 Challenge and aims to investigate the performance of Audio Spoof Detection, trained using data augmentation through laundering attacks, on the ASVSpoof 5 database. The results demonstrate that our system performs worst on A18, A19, A20, A26, and A30 spoofing attacks and in the codec and compression conditions of C08, C09, and C10.
- Abstract(参考訳): 最近のTTS(text-to-speech)の発展により、音声クローン(VC)はより現実的で、手頃で、アクセスしやすくなっている。
これはジョー・バイデンのニューハンプシャー・ディープフェイク・ロボコールなど、この技術の潜在的な悪用を引き起こしている。
このようなクローンを検出するためにいくつかの方法が提案されている。
しかし、これらの手法は比較的クリーンなデータベース上で訓練され、評価されている。
ASVspoof 5 Challengeは、様々なスプーフ攻撃やコーデック状態を含む様々な音響条件のクラウドソースデータベースを導入した。
本稿では, ASVspoof 5 Challenge への提出を行い,ASVSpoof 5 データベース上で, 雷攻撃によるデータ増強による訓練による音声音声検出の性能評価を目的とした。
その結果,A18,A19,A20,A26,A30のスプーフィング攻撃,およびC08,C09,C10のコーデックおよび圧縮条件において,我々のシステムは最悪の性能を示した。
関連論文リスト
- Can DeepFake Speech be Reliably Detected? [17.10792531439146]
この研究は、最先端のオープンソース音声検出装置に対する能動的悪意のある攻撃に関する最初の体系的研究である。
その結果、敵の脅威が進行する中で、より堅牢な検出方法が緊急に必要であることが明らかとなった。
論文 参考訳(メタデータ) (2024-10-09T06:13:48Z) - ASVspoof 5: Crowdsourced Speech Data, Deepfakes, and Adversarial Attacks at Scale [59.25180900687571]
ASVspoof 5は、音声スプーフとディープフェイク攻撃の研究を促進する一連の課題の第5版である。
本稿では,2つの課題トラック,新しいデータベース,評価指標,評価プラットフォームについて述べる。
論文 参考訳(メタデータ) (2024-08-16T13:37:20Z) - NUANCE: Near Ultrasound Attack On Networked Communication Environments [0.0]
本研究では, 近距離超音波トロイの木馬を用いたAmazon Alexa音声サービスにおける難聴攻撃ベクトルについて検討した。
この研究は、各攻撃ベクトルをMITRE ATT&CK行列から戦術またはテクニックにマッピングする。
実験では、攻撃の有効性を評価するために50個の近超音波を生成し、調査した。
論文 参考訳(メタデータ) (2023-04-25T23:28:46Z) - SceneFake: An Initial Dataset and Benchmarks for Scene Fake Audio Detection [54.74467470358476]
本稿では,シーンフェイク音声検出のためのデータセットSceneFakeを提案する。
操作されたオーディオは、オリジナルオーディオの音響シーンを改ざんするだけで生成される。
本論文では,SceneFakeデータセット上での擬似音声検出ベンチマーク結果について報告する。
論文 参考訳(メタデータ) (2022-11-11T09:05:50Z) - Voice Spoofing Countermeasures: Taxonomy, State-of-the-art, experimental
analysis of generalizability, open challenges, and the way forward [2.393661358372807]
本報告では,手作り特徴,ディープラーニング,エンドツーエンド,汎用スプーフィング対策ソリューションを用いたスプーフィング検出に関する文献のレビューを行う。
本稿では,これらの対策の有効性をいくつかのデータセットで報告し,コーパス間で評価する。
論文 参考訳(メタデータ) (2022-10-02T03:53:37Z) - Partially Fake Audio Detection by Self-attention-based Fake Span
Discovery [89.21979663248007]
本稿では,部分的に偽の音声を検出する自己認識機構を備えた質問応答(フェイクスパン発見)戦略を導入することで,新たな枠組みを提案する。
ADD 2022の部分的に偽の音声検出トラックで第2位にランクインした。
論文 参考訳(メタデータ) (2022-02-14T13:20:55Z) - ASVspoof 2021: accelerating progress in spoofed and deepfake speech
detection [70.45884214674057]
ASVspoof 2021は、スプーフの研究を促進するための2年制の課題の第4版である。
本稿では,3つのタスク,それぞれのデータベース,評価基準,4つの課題ベースライン,評価プラットフォーム,課題結果の要約について述べる。
論文 参考訳(メタデータ) (2021-09-01T16:17:31Z) - Spotting adversarial samples for speaker verification by neural vocoders [102.1486475058963]
我々は、自動話者検証(ASV)のための敵対サンプルを見つけるために、ニューラルボコーダを採用する。
元の音声と再合成音声のASVスコアの違いは、真正と逆正のサンプルの識別に良い指標であることがわかった。
私たちのコードは、将来的な比較作業のためにオープンソースにされます。
論文 参考訳(メタデータ) (2021-07-01T08:58:16Z) - Half-Truth: A Partially Fake Audio Detection Dataset [60.08010668752466]
本稿では半真性音声検出(HAD)のためのデータセットを開発する。
HADデータセットの部分的に偽の音声は、発話中の数単語だけを変更する。
我々は、偽のユトランを検知するだけでなく、このデータセットを用いて音声中の操作された領域をローカライズする。
論文 参考訳(メタデータ) (2021-04-08T08:57:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。