Explain Like I'm Five: Using LLMs to Improve PDE Surrogate Models with Text
- URL: http://arxiv.org/abs/2410.01137v4
- Date: Tue, 5 Nov 2024 19:47:03 GMT
- Title: Explain Like I'm Five: Using LLMs to Improve PDE Surrogate Models with Text
- Authors: Cooper Lorsung, Amir Barati Farimani,
- Abstract summary: We use pretrained Large Language Models (LLMs) to integrate various amounts known system information into PDE learning.
Our approach significantly outperforms our baseline model, FactFormer, in both next-step prediction and autore rollout performance.
Further analysis shows that pretrained LLMs provide highly structured latent space that is consistent with the amount of system information provided through text.
- Score: 7.136205674624813
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Solving Partial Differential Equations (PDEs) is ubiquitous in science and engineering. Computational complexity and difficulty in writing numerical solvers has motivated the development of machine learning techniques to generate solutions quickly. Many existing methods are purely data driven, relying solely on numerical solution fields, rather than known system information such as boundary conditions and governing equations. However, the recent rise in popularity of Large Language Models (LLMs) has enabled easy integration of text in multimodal machine learning models. In this work, we use pretrained LLMs to integrate various amounts known system information into PDE learning. Our multimodal approach significantly outperforms our baseline model, FactFormer, in both next-step prediction and autoregressive rollout performance on the 2D Heat, Burgers, Navier-Stokes, and Shallow Water equations. Further analysis shows that pretrained LLMs provide highly structured latent space that is consistent with the amount of system information provided through text.
Related papers
- MoRE-LLM: Mixture of Rule Experts Guided by a Large Language Model [54.14155564592936]
We propose a Mixture of Rule Experts guided by a Large Language Model (MoRE-LLM)
MoRE-LLM steers the discovery of local rule-based surrogates during training and their utilization for the classification task.
LLM is responsible for enhancing the domain knowledge alignment of the rules by correcting and contextualizing them.
arXiv Detail & Related papers (2025-03-26T11:09:21Z) - Distributed LLMs and Multimodal Large Language Models: A Survey on Advances, Challenges, and Future Directions [1.3638337521666275]
Language models (LMs) are machine learning models designed to predict linguistic patterns by estimating the probability of word sequences based on large-scale datasets, such as text.
Although larger datasets typically enhance LM performance, scalability remains a challenge due to constraints in computational power and resources.
Recent research has focused on developing decentralized techniques to enable distributed training and inference.
arXiv Detail & Related papers (2025-03-20T15:18:25Z) - Training Plug-n-Play Knowledge Modules with Deep Context Distillation [52.94830874557649]
In this paper, we propose a way of modularizing knowledge by training document-level Knowledge Modules (KMs)
KMs are lightweight components implemented as parameter-efficient LoRA modules, which are trained to store information about new documents.
Our method outperforms standard next-token prediction and pre-instruction training techniques, across two datasets.
arXiv Detail & Related papers (2025-03-11T01:07:57Z) - A Multimodal PDE Foundation Model for Prediction and Scientific Text Descriptions [13.48986376824454]
PDE foundation models utilize neural networks to train approximations to multiple differential equations simultaneously.
We propose a novel multimodal deep learning approach that leverages a transformer-based architecture to approximate solution operators.
Our approach generates interpretable scientific text descriptions, offering deeper insights into the underlying dynamics and solution properties.
arXiv Detail & Related papers (2025-02-09T20:50:28Z) - A Text-Based Knowledge-Embedded Soft Sensing Modeling Approach for General Industrial Process Tasks Based on Large Language Model [16.842988666530204]
Data-driven soft sensors (DDSS) have become mainstream methods for predicting key performance indicators in process industries.
Development requires complex and costly customized designs tailored to various tasks during the modeling process.
We propose a general framework named LLM-TKESS (large language model for text-based knowledge-embedded soft sensing) for enhanced soft sensing modeling.
arXiv Detail & Related papers (2025-01-09T08:59:14Z) - RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
Multimodal Large Language Models (MLLMs) have recently received substantial interest, which shows their emerging potential as general-purpose models for various vision-language tasks.
Retrieval augmentation techniques have proven to be effective plugins for both LLMs and MLLMs.
In this study, we propose multimodal adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training (RA-BLIP), a novel retrieval-augmented framework for various MLLMs.
arXiv Detail & Related papers (2024-10-18T03:45:19Z) - Enhancing Multi-Step Reasoning Abilities of Language Models through Direct Q-Function Optimization [50.485788083202124]
Reinforcement Learning (RL) plays a crucial role in aligning large language models with human preferences and improving their ability to perform complex tasks.
We introduce Direct Q-function Optimization (DQO), which formulates the response generation process as a Markov Decision Process (MDP) and utilizes the soft actor-critic (SAC) framework to optimize a Q-function directly parameterized by the language model.
Experimental results on two math problem-solving datasets, GSM8K and MATH, demonstrate that DQO outperforms previous methods, establishing it as a promising offline reinforcement learning approach for aligning language models.
arXiv Detail & Related papers (2024-10-11T23:29:20Z) - MaD-Scientist: AI-based Scientist solving Convection-Diffusion-Reaction Equations Using Massive PINN-Based Prior Data [22.262191225577244]
We explore whether a similar approach can be applied to scientific foundation models (SFMs)
We collect low-cost physics-informed neural network (PINN)-based approximated prior data in the form of solutions to partial differential equations (PDEs) constructed through an arbitrary linear combination of mathematical dictionaries.
We provide experimental evidence on the one-dimensional convection-diffusion-reaction equation, which demonstrate that pre-training remains robust even with approximated prior data.
arXiv Detail & Related papers (2024-10-09T00:52:00Z) - Model Merging in LLMs, MLLMs, and Beyond: Methods, Theories, Applications and Opportunities [89.40778301238642]
Model merging is an efficient empowerment technique in the machine learning community.
There is a significant gap in the literature regarding a systematic and thorough review of these techniques.
arXiv Detail & Related papers (2024-08-14T16:58:48Z) - CELA: Cost-Efficient Language Model Alignment for CTR Prediction [70.65910069412944]
Click-Through Rate (CTR) prediction holds a paramount position in recommender systems.
Recent efforts have sought to mitigate these challenges by integrating Pre-trained Language Models (PLMs)
We propose textbfCost-textbfEfficient textbfLanguage Model textbfAlignment (textbfCELA) for CTR prediction.
arXiv Detail & Related papers (2024-05-17T07:43:25Z) - LLM4ED: Large Language Models for Automatic Equation Discovery [0.8644909837301149]
We introduce a new framework that utilizes natural language-based prompts to guide large language models in automatically mining governing equations from data.
Specifically, we first utilize the generation capability of LLMs to generate diverse equations in string form, and then evaluate the generated equations based on observations.
Experiments are extensively conducted on both partial differential equations and ordinary differential equations.
arXiv Detail & Related papers (2024-05-13T14:03:49Z) - FMint: Bridging Human Designed and Data Pretrained Models for Differential Equation Foundation Model [5.748690310135373]
We propose a novel multi-modal foundation model, named textbfFMint, to bridge the gap between human-designed and data-driven models.
Built on a decoder-only transformer architecture with in-context learning, FMint utilizes both numerical and textual data to learn a universal error correction scheme.
Our results demonstrate the effectiveness of the proposed model in terms of both accuracy and efficiency compared to classical numerical solvers.
arXiv Detail & Related papers (2024-04-23T02:36:47Z) - Cross-Data Knowledge Graph Construction for LLM-enabled Educational Question-Answering System: A Case Study at HCMUT [2.8000537365271367]
Large language models (LLMs) have emerged as a vibrant research topic.
LLMs face challenges in remembering events, incorporating new information, and addressing domain-specific issues or hallucinations.
This article proposes a method for automatically constructing a Knowledge Graph from multiple data sources.
arXiv Detail & Related papers (2024-04-14T16:34:31Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - Large Language Models on Graphs: A Comprehensive Survey [77.16803297418201]
We provide a systematic review of scenarios and techniques related to large language models on graphs.
We first summarize potential scenarios of adopting LLMs on graphs into three categories, namely pure graphs, text-attributed graphs, and text-paired graphs.
We discuss the real-world applications of such methods and summarize open-source codes and benchmark datasets.
arXiv Detail & Related papers (2023-12-05T14:14:27Z) - Simultaneous Machine Translation with Large Language Models [51.470478122113356]
We investigate the possibility of applying Large Language Models to SimulMT tasks.
We conducted experiments using the textttLlama2-7b-chat model on nine different languages from the MUST-C dataset.
The results show that LLM outperforms dedicated MT models in terms of BLEU and LAAL metrics.
arXiv Detail & Related papers (2023-09-13T04:06:47Z) - MinT: Boosting Generalization in Mathematical Reasoning via Multi-View
Fine-Tuning [53.90744622542961]
Reasoning in mathematical domains remains a significant challenge for small language models (LMs)
We introduce a new method that exploits existing mathematical problem datasets with diverse annotation styles.
Experimental results show that our strategy enables a LLaMA-7B model to outperform prior approaches.
arXiv Detail & Related papers (2023-07-16T05:41:53Z) - Self-Supervised Learning with Lie Symmetries for Partial Differential
Equations [25.584036829191902]
We learn general-purpose representations of PDEs by implementing joint embedding methods for self-supervised learning (SSL)
Our representation outperforms baseline approaches to invariant tasks, such as regressing the coefficients of a PDE, while also improving the time-stepping performance of neural solvers.
We hope that our proposed methodology will prove useful in the eventual development of general-purpose foundation models for PDEs.
arXiv Detail & Related papers (2023-07-11T16:52:22Z) - Training Deep Surrogate Models with Large Scale Online Learning [48.7576911714538]
Deep learning algorithms have emerged as a viable alternative for obtaining fast solutions for PDEs.
Models are usually trained on synthetic data generated by solvers, stored on disk and read back for training.
It proposes an open source online training framework for deep surrogate models.
arXiv Detail & Related papers (2023-06-28T12:02:27Z) - Challenges and opportunities for machine learning in multiscale
computational modeling [0.0]
Solving for complex multiscale systems remains computationally onerous due to the high dimensionality of the solution space.
Machine learning (ML) has emerged as a promising solution that can either serve as a surrogate for, accelerate or augment traditional numerical methods.
This paper provides a perspective on the opportunities and challenges of using ML for complex multiscale modeling and simulation.
arXiv Detail & Related papers (2023-03-22T02:04:39Z) - Efficient time stepping for numerical integration using reinforcement
learning [0.15393457051344295]
We propose a data-driven time stepping scheme based on machine learning and meta-learning.
First, one or several (in the case of non-smooth or hybrid systems) base learners are trained using RL.
Then, a meta-learner is trained which (depending on the system state) selects the base learner that appears to be optimal for the current situation.
arXiv Detail & Related papers (2021-04-08T07:24:54Z) - A Survey on Large-scale Machine Learning [67.6997613600942]
Machine learning can provide deep insights into data, allowing machines to make high-quality predictions.
Most sophisticated machine learning approaches suffer from huge time costs when operating on large-scale data.
Large-scale Machine Learning aims to learn patterns from big data with comparable performance efficiently.
arXiv Detail & Related papers (2020-08-10T06:07:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.