Explain Like I'm Five: Using LLMs to Improve PDE Surrogate Models with Text
- URL: http://arxiv.org/abs/2410.01137v4
- Date: Tue, 5 Nov 2024 19:47:03 GMT
- Title: Explain Like I'm Five: Using LLMs to Improve PDE Surrogate Models with Text
- Authors: Cooper Lorsung, Amir Barati Farimani,
- Abstract summary: We use pretrained Large Language Models (LLMs) to integrate various amounts known system information into PDE learning.
Our approach significantly outperforms our baseline model, FactFormer, in both next-step prediction and autore rollout performance.
Further analysis shows that pretrained LLMs provide highly structured latent space that is consistent with the amount of system information provided through text.
- Score: 7.136205674624813
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Solving Partial Differential Equations (PDEs) is ubiquitous in science and engineering. Computational complexity and difficulty in writing numerical solvers has motivated the development of machine learning techniques to generate solutions quickly. Many existing methods are purely data driven, relying solely on numerical solution fields, rather than known system information such as boundary conditions and governing equations. However, the recent rise in popularity of Large Language Models (LLMs) has enabled easy integration of text in multimodal machine learning models. In this work, we use pretrained LLMs to integrate various amounts known system information into PDE learning. Our multimodal approach significantly outperforms our baseline model, FactFormer, in both next-step prediction and autoregressive rollout performance on the 2D Heat, Burgers, Navier-Stokes, and Shallow Water equations. Further analysis shows that pretrained LLMs provide highly structured latent space that is consistent with the amount of system information provided through text.
Related papers
- Enhancing Multi-Step Reasoning Abilities of Language Models through Direct Q-Function Optimization [50.485788083202124]
Reinforcement Learning (RL) plays a crucial role in aligning large language models with human preferences and improving their ability to perform complex tasks.
We introduce Direct Q-function Optimization (DQO), which formulates the response generation process as a Markov Decision Process (MDP) and utilizes the soft actor-critic (SAC) framework to optimize a Q-function directly parameterized by the language model.
Experimental results on two math problem-solving datasets, GSM8K and MATH, demonstrate that DQO outperforms previous methods, establishing it as a promising offline reinforcement learning approach for aligning language models.
arXiv Detail & Related papers (2024-10-11T23:29:20Z) - Model Merging in LLMs, MLLMs, and Beyond: Methods, Theories, Applications and Opportunities [89.40778301238642]
Model merging is an efficient empowerment technique in the machine learning community.
There is a significant gap in the literature regarding a systematic and thorough review of these techniques.
arXiv Detail & Related papers (2024-08-14T16:58:48Z) - LLM4ED: Large Language Models for Automatic Equation Discovery [0.8644909837301149]
We introduce a new framework that utilizes natural language-based prompts to guide large language models in automatically mining governing equations from data.
Specifically, we first utilize the generation capability of LLMs to generate diverse equations in string form, and then evaluate the generated equations based on observations.
Experiments are extensively conducted on both partial differential equations and ordinary differential equations.
arXiv Detail & Related papers (2024-05-13T14:03:49Z) - FMint: Bridging Human Designed and Data Pretrained Models for Differential Equation Foundation Model [5.748690310135373]
We propose a novel multi-modal foundation model, named textbfFMint, to bridge the gap between human-designed and data-driven models.
Built on a decoder-only transformer architecture with in-context learning, FMint utilizes both numerical and textual data to learn a universal error correction scheme.
Our results demonstrate the effectiveness of the proposed model in terms of both accuracy and efficiency compared to classical numerical solvers.
arXiv Detail & Related papers (2024-04-23T02:36:47Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - MinT: Boosting Generalization in Mathematical Reasoning via Multi-View
Fine-Tuning [53.90744622542961]
Reasoning in mathematical domains remains a significant challenge for small language models (LMs)
We introduce a new method that exploits existing mathematical problem datasets with diverse annotation styles.
Experimental results show that our strategy enables a LLaMA-7B model to outperform prior approaches.
arXiv Detail & Related papers (2023-07-16T05:41:53Z) - Self-Supervised Learning with Lie Symmetries for Partial Differential
Equations [25.584036829191902]
We learn general-purpose representations of PDEs by implementing joint embedding methods for self-supervised learning (SSL)
Our representation outperforms baseline approaches to invariant tasks, such as regressing the coefficients of a PDE, while also improving the time-stepping performance of neural solvers.
We hope that our proposed methodology will prove useful in the eventual development of general-purpose foundation models for PDEs.
arXiv Detail & Related papers (2023-07-11T16:52:22Z) - Training Deep Surrogate Models with Large Scale Online Learning [48.7576911714538]
Deep learning algorithms have emerged as a viable alternative for obtaining fast solutions for PDEs.
Models are usually trained on synthetic data generated by solvers, stored on disk and read back for training.
It proposes an open source online training framework for deep surrogate models.
arXiv Detail & Related papers (2023-06-28T12:02:27Z) - Challenges and opportunities for machine learning in multiscale
computational modeling [0.0]
Solving for complex multiscale systems remains computationally onerous due to the high dimensionality of the solution space.
Machine learning (ML) has emerged as a promising solution that can either serve as a surrogate for, accelerate or augment traditional numerical methods.
This paper provides a perspective on the opportunities and challenges of using ML for complex multiscale modeling and simulation.
arXiv Detail & Related papers (2023-03-22T02:04:39Z) - Efficient time stepping for numerical integration using reinforcement
learning [0.15393457051344295]
We propose a data-driven time stepping scheme based on machine learning and meta-learning.
First, one or several (in the case of non-smooth or hybrid systems) base learners are trained using RL.
Then, a meta-learner is trained which (depending on the system state) selects the base learner that appears to be optimal for the current situation.
arXiv Detail & Related papers (2021-04-08T07:24:54Z) - A Survey on Large-scale Machine Learning [67.6997613600942]
Machine learning can provide deep insights into data, allowing machines to make high-quality predictions.
Most sophisticated machine learning approaches suffer from huge time costs when operating on large-scale data.
Large-scale Machine Learning aims to learn patterns from big data with comparable performance efficiently.
arXiv Detail & Related papers (2020-08-10T06:07:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.