GADFA: Generator-Assisted Decision-Focused Approach for Opinion Expressing Timing Identification
- URL: http://arxiv.org/abs/2410.01169v1
- Date: Wed, 2 Oct 2024 01:54:46 GMT
- Title: GADFA: Generator-Assisted Decision-Focused Approach for Opinion Expressing Timing Identification
- Authors: Chung-Chi Chen, Hiroya Takamura, Ichiro Kobayashi, Yusuke Miyao,
- Abstract summary: In real-life circumstances, individuals do not continuously generate text or voice their opinions.
Our study introduces an innovative task - the identification of news-triggered opinion expressing timing.
Our approach is decision-focused, leveraging text generation models to steer the classification model.
- Score: 21.079716095758158
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The advancement of text generation models has granted us the capability to produce coherent and convincing text on demand. Yet, in real-life circumstances, individuals do not continuously generate text or voice their opinions. For instance, consumers pen product reviews after weighing the merits and demerits of a product, and professional analysts issue reports following significant news releases. In essence, opinion expression is typically prompted by particular reasons or signals. Despite long-standing developments in opinion mining, the appropriate timing for expressing an opinion remains largely unexplored. To address this deficit, our study introduces an innovative task - the identification of news-triggered opinion expressing timing. We ground this task in the actions of professional stock analysts and develop a novel dataset for investigation. Our approach is decision-focused, leveraging text generation models to steer the classification model, thus enhancing overall performance. Our experimental findings demonstrate that the text generated by our model contributes fresh insights from various angles, effectively aiding in identifying the optimal timing for opinion expression.
Related papers
- Analysis of Plan-based Retrieval for Grounded Text Generation [78.89478272104739]
hallucinations occur when a language model is given a generation task outside its parametric knowledge.
A common strategy to address this limitation is to infuse the language models with retrieval mechanisms.
We analyze how planning can be used to guide retrieval to further reduce the frequency of hallucinations.
arXiv Detail & Related papers (2024-08-20T02:19:35Z) - Advancing Prompt Recovery in NLP: A Deep Dive into the Integration of Gemma-2b-it and Phi2 Models [18.936945999215038]
The design and effectiveness of prompts represent a challenging and relatively untapped field within NLP research.
This paper delves into an exhaustive investigation of prompt recovery methodologies, employing a spectrum of pre-trained language models and strategies.
Through meticulous experimentation and detailed analysis, we elucidate the outstanding performance of the Gemma-2b-it + Phi2 model + Pretrain.
arXiv Detail & Related papers (2024-07-07T02:15:26Z) - A Survey on Natural Language Counterfactual Generation [7.022371235308068]
Natural language counterfactual generation aims to minimally modify a given text such that the modified text will be classified into a different class.
We propose a new taxonomy that systematically categorizes the generation methods into four groups and summarizes the metrics for evaluating the generation quality.
arXiv Detail & Related papers (2024-07-04T15:13:59Z) - Exploring Precision and Recall to assess the quality and diversity of LLMs [82.21278402856079]
We introduce a novel evaluation framework for Large Language Models (LLMs) such as textscLlama-2 and textscMistral.
This approach allows for a nuanced assessment of the quality and diversity of generated text without the need for aligned corpora.
arXiv Detail & Related papers (2024-02-16T13:53:26Z) - AaKOS: Aspect-adaptive Knowledge-based Opinion Summarization [5.4138734778206]
The rapid growth of information on the Internet has led to an overwhelming amount of opinions and comments on various activities, products, and services.
This makes it difficult and time-consuming for users to process all the available information when making decisions.
We propose an Aspect-adaptive Knowledge-based Opinion Summarization model for product reviews.
arXiv Detail & Related papers (2023-05-26T03:44:35Z) - Measuring the Effect of Influential Messages on Varying Personas [67.1149173905004]
We present a new task, Response Forecasting on Personas for News Media, to estimate the response a persona might have upon seeing a news message.
The proposed task not only introduces personalization in the modeling but also predicts the sentiment polarity and intensity of each response.
This enables more accurate and comprehensive inference on the mental state of the persona.
arXiv Detail & Related papers (2023-05-25T21:01:00Z) - Attend-and-Excite: Attention-Based Semantic Guidance for Text-to-Image
Diffusion Models [103.61066310897928]
Recent text-to-image generative models have demonstrated an unparalleled ability to generate diverse and creative imagery guided by a target text prompt.
While revolutionary, current state-of-the-art diffusion models may still fail in generating images that fully convey the semantics in the given text prompt.
We analyze the publicly available Stable Diffusion model and assess the existence of catastrophic neglect, where the model fails to generate one or more of the subjects from the input prompt.
We introduce the concept of Generative Semantic Nursing (GSN), where we seek to intervene in the generative process on the fly during inference time to improve the faithfulness
arXiv Detail & Related papers (2023-01-31T18:10:38Z) - Latent Aspect Detection from Online Unsolicited Customer Reviews [3.622430080512776]
Aspect detection helps product owners and service providers to identify shortcomings and prioritize customers' needs.
Existing methods focus on detecting the surface form of an aspect by training supervised learning methods that fall short when aspects are latent in reviews.
We propose an unsupervised method to extract latent occurrences of aspects.
arXiv Detail & Related papers (2022-04-14T13:46:25Z) - Few-Shot Learning for Opinion Summarization [117.70510762845338]
Opinion summarization is the automatic creation of text reflecting subjective information expressed in multiple documents.
In this work, we show that even a handful of summaries is sufficient to bootstrap generation of the summary text.
Our approach substantially outperforms previous extractive and abstractive methods in automatic and human evaluation.
arXiv Detail & Related papers (2020-04-30T15:37:38Z) - Mining customer product reviews for product development: A summarization
process [0.7742297876120561]
This research set out to identify and structure from online reviews the words and expressions related to customers' likes and dislikes to guide product development.
The authors propose a summarization model containing multiples aspects of user preference, such as product affordances, emotions, usage conditions.
A case study demonstrates that with the proposed model and the annotation guidelines, human annotators can structure the online reviews with high inter-agreement.
arXiv Detail & Related papers (2020-01-13T13:01:14Z) - Latent Opinions Transfer Network for Target-Oriented Opinion Words
Extraction [63.70885228396077]
We propose a novel model to transfer opinions knowledge from resource-rich review sentiment classification datasets to low-resource task TOWE.
Our model achieves better performance compared to other state-of-the-art methods and significantly outperforms the base model without transferring opinions knowledge.
arXiv Detail & Related papers (2020-01-07T11:50:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.