Informed Dynamic Scheduling for QLDPC Codes
- URL: http://arxiv.org/abs/2410.01197v1
- Date: Wed, 2 Oct 2024 03:00:15 GMT
- Title: Informed Dynamic Scheduling for QLDPC Codes
- Authors: Tzu-Hsuan Huang, Yeong-Luh Ueng,
- Abstract summary: We consider edge-wise informed dynamic scheduling (IDS) for QLDPC codes based on syndrome-based residual belief propagation (sRBP)
Two strategies, including edge pool design and error pre-correction, are introduced to tackle this obstacle and quantum trapping sets.
A novel sRBP equipped with a predict-and-reduce-error mechanism (PRE-sRBP) is proposed.
- Score: 1.7802147489386628
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent research has shown that syndrome-based belief propagation using layered scheduling (sLBP) can not only accelerate the convergence rate but also improve the error rate performance by breaking the quantum trapping sets for quantum low-density parity-check (QLDPC) codes, showcasing a result distinct from classical error correction codes. In this paper, we consider edge-wise informed dynamic scheduling (IDS) for QLDPC codes based on syndrome-based residual belief propagation (sRBP). However, the construction of QLDPC codes and the identical prior intrinsic information assignment will result in an equal residual in many edges, causing a performance limitation for sRBP. Two strategies, including edge pool design and error pre-correction, are introduced to tackle this obstacle and quantum trapping sets. Then, a novel sRBP equipped with a predict-and-reduce-error mechanism (PRE-sRBP) is proposed, which can provide a performance gain on considered QLDPC codes of over one order of magnitude compared to sLBP.
Related papers
- Performance of Cascade and LDPC-codes for Information Reconciliation on Industrial Quantum Key Distribution Systems [69.47813697920358]
We analyze, simulate, optimize, and compare the performance of two prevalent algorithms used for Information Reconciliation.
We focus on their applicability in practical and industrial settings, operating in realistic and application-close conditions.
arXiv Detail & Related papers (2024-08-28T12:51:03Z) - The Road to Near-Capacity CV-QKD Reconciliation: An FEC-Agnostic Design [53.67135680812675]
A new codeword-based QKD reconciliation scheme is proposed.
Both the authenticated classical channel (ClC) and the quantum channel (QuC) are protected by separate forward error correction (FEC) coding schemes.
The proposed system makes QKD reconciliation compatible with a wide range of FEC schemes.
arXiv Detail & Related papers (2024-03-24T14:47:08Z) - Low-density parity-check representation of fault-tolerant quantum circuits [5.064729356056529]
In fault-tolerant quantum computing, quantum algorithms are implemented through quantum circuits capable of error correction.
This paper presents a toolkit for designing and analysing fault-tolerant quantum circuits.
arXiv Detail & Related papers (2024-03-15T12:56:38Z) - Fault-tolerant quantum architectures based on erasure qubits [49.227671756557946]
We exploit the idea of erasure qubits, relying on an efficient conversion of the dominant noise into erasures at known locations.
We propose and optimize QEC schemes based on erasure qubits and the recently-introduced Floquet codes.
Our results demonstrate that, despite being slightly more complex, QEC schemes based on erasure qubits can significantly outperform standard approaches.
arXiv Detail & Related papers (2023-12-21T17:40:18Z) - Belief Propagation Decoding of Quantum LDPC Codes with Guided Decimation [55.8930142490617]
We propose a decoder for QLDPC codes based on BP guided decimation (BPGD)
BPGD significantly reduces the BP failure rate due to non-convergence.
arXiv Detail & Related papers (2023-12-18T05:58:07Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Neural Belief Propagation Decoding of Quantum LDPC Codes Using
Overcomplete Check Matrices [60.02503434201552]
We propose to decode QLDPC codes based on a check matrix with redundant rows, generated from linear combinations of the rows in the original check matrix.
This approach yields a significant improvement in decoding performance with the additional advantage of very low decoding latency.
arXiv Detail & Related papers (2022-12-20T13:41:27Z) - On Quantum-Assisted LDPC Decoding Augmented with Classical
Post-Processing [1.0498337709016812]
This paper looks into the Quadratic Unconstrained Binary Optimization (QUBO) and utilized D-Wave 2000Q Quantum Annealer to solve it.
We evaluated and compared this implementation against the decoding performance obtained using Simulated Annealing (SA) and belief propagation (BP) decoding with classical computers.
arXiv Detail & Related papers (2022-04-21T08:01:39Z) - Trapping Sets of Quantum LDPC Codes [9.482750811734565]
We identify and classify quantum trapping sets (QTSs) according to their topological structure and decoder used.
We show that the knowledge of QTSs can be used to design better QLDPC codes and decoders.
arXiv Detail & Related papers (2020-12-30T19:35:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.