Non-Hermitian ultra-strong bosonic condensation through interaction-induced caging
- URL: http://arxiv.org/abs/2410.01258v2
- Date: Mon, 14 Oct 2024 14:19:28 GMT
- Title: Non-Hermitian ultra-strong bosonic condensation through interaction-induced caging
- Authors: Mengjie Yang, Luqi Yuan, Ching Hua Lee,
- Abstract summary: We uncover a new mechanism whereby the triple interplay of non-Hermitian pumping, bosonic interactions and nontrivial band topology leads to ultra-strong bosonic condensation.
The extent of condensation goes beyond what is naively expected from the interaction-induced trapping of non-Hermitian pumped states.
- Score: 2.2230089845369094
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We uncover a new mechanism whereby the triple interplay of non-Hermitian pumping, bosonic interactions and nontrivial band topology leads to ultra-strong bosonic condensation. The extent of condensation goes beyond what is naively expected from the interaction-induced trapping of non-Hermitian pumped states, and is based on an emergent caging mechanism that can be further enhanced by topological boundary modes. Beyond our minimal model with 2 bosons, this caging remains applicable for generic many-boson systems subject to a broad range of density interactions and non-Hermitian hopping asymmetry. Our novel new mechanism for particle localization and condensation would inspire fundamental shifts in our comprehension of many-body non-Hermitian dynamics and opens new avenues for controlling and manipulating bosons.
Related papers
- Unconventional and robust light-matter interactions based on the non-Hermitian skin effect [1.346671070856618]
We study a series of unconventional light-matter interactions between quantum emitters and the Hatano--Nelson model.
We find that the protection from dissipation arises from a cooperation of the non-Hermiticity and the self-interference effect.
These results have potential applications in engineering exotic spin Hamiltonians and quantum networks.
arXiv Detail & Related papers (2024-08-19T09:20:32Z) - Exceptional point and hysteresis trajectories in cold Rydberg atomic gases [33.90303571473806]
Long-range interactions induce an additional dissipation channel, resulting in non-Hermitian many-body dynamics.
Here, we report experimental observation of interaction-induced exceptional points in cold Rydberg atomic gases.
arXiv Detail & Related papers (2024-08-06T11:35:06Z) - Stability and decay of subradiant patterns in a quantum gas with photon-mediated interactions [34.82692226532414]
We study subradiance in a Bose-Einstein condensate positioned at the mode crossing of two optical cavities.
metastable density structures that suppress emission into one cavity mode prevent relaxation to the stationary, superradiant grating.
We reproduce these dynamics by a quantum mean field model, suggesting that subradiance shares characteristics with quasi-stationary states predicted in other long-range interacting systems.
arXiv Detail & Related papers (2024-07-12T12:47:07Z) - Coalescing hardcore-boson condensate states with nonzero momentum [0.0]
We show that condensate modes with off-diagonal long-range order (ODLRO) can exist when certain system parameters satisfy specific matching conditions.
Under open boundary conditions, the condensate states become coalescing states when the non-Hermitian $mathcalPT$-symmetric boundary gives rise to the EPs.
The fundamental mechanism behind this phenomenon is uncovered through analyzing the scattering dynamics of many-particle wavepackets at the non-Hermitian boundaries.
arXiv Detail & Related papers (2024-04-20T07:03:10Z) - Non-reciprocal dynamics and the non-Hermitian skin effect of repulsively bound pairs [0.0]
We study the dynamics of a Bose-Hubbard model coupled to an engineered environment.
We show that single particles and doublons can be made to spread with opposite directionality.
arXiv Detail & Related papers (2024-03-15T16:32:15Z) - Quantized Thouless pumps protected by interactions in dimerized Rydberg tweezer arrays [41.94295877935867]
In the noninteracting case, quantized Thouless pumps can only occur when a topological singularity is encircled adiabatically.
In the presence of interactions, such topological transport can even persist for exotic paths in which the system gets arbitrarily close to the noninteracting singularity.
arXiv Detail & Related papers (2024-02-14T16:58:21Z) - Collective flow of fermionic impurities immersed in a Bose-Einstein Condensate [34.82692226532414]
We study the collective oscillations of spin-polarized fermionic impurities immersed in a Bose-Einstein condensate.
For strong interactions, the Fermi gas perfectly mimics the superfluid hydrodynamic modes of the condensate.
With an increasing number of bosonic thermal excitations, the dynamics of the impurities cross over from the collisionless to the hydrodynamic regime.
arXiv Detail & Related papers (2023-04-16T00:58:05Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z) - Theory of a resonantly interacting impurity in a Bose-Einstein
condensate [0.6445605125467572]
We investigate a Bose-Einstein condensate in strong interaction with a single impurity particle.
We find a new dynamical transition regime between attractive and repulsive polarons.
arXiv Detail & Related papers (2020-03-04T10:30:05Z) - How creating one additional well can generate Bose-Einstein condensation [0.0]
realization of Bose-Einstein condensation in ultracold trapped gases has led to a revival of interest in that fascinating quantum phenomenon.
We propose a system of strongly interacting bosons which overcomes those obstacles by exhibiting a number of intriguing related features.
arXiv Detail & Related papers (2020-02-23T22:08:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.