Coalescing hardcore-boson condensate states with nonzero momentum
- URL: http://arxiv.org/abs/2404.13297v2
- Date: Wed, 23 Oct 2024 05:52:39 GMT
- Title: Coalescing hardcore-boson condensate states with nonzero momentum
- Authors: C. H. Zhang, Z. Song,
- Abstract summary: We show that condensate modes with off-diagonal long-range order (ODLRO) can exist when certain system parameters satisfy specific matching conditions.
Under open boundary conditions, the condensate states become coalescing states when the non-Hermitian $mathcalPT$-symmetric boundary gives rise to the EPs.
The fundamental mechanism behind this phenomenon is uncovered through analyzing the scattering dynamics of many-particle wavepackets at the non-Hermitian boundaries.
- Score: 0.0
- License:
- Abstract: Exceptional points (EPs), as an exclusive feature of a non-Hermitian system, support coalescing states to be alternative stable state beyond the ground state. In this work, we explore the influence of non-Hermitian impurities on the dynamic formation of condensate states in one-, two-, and three-dimensional extended Bose-Hubbard systems with strong on-site interaction. Based on the solution for the hardcore limit, we show exactly that condensate modes with off-diagonal long-range order (ODLRO) can exist when certain system parameters satisfy specific matching conditions. Under open boundary conditions, the condensate states become coalescing states when the non-Hermitian $\mathcal{PT}$-symmetric boundary gives rise to the EPs. The fundamental mechanism behind this phenomenon is uncovered through analyzing the scattering dynamics of many-particle wavepackets at the non-Hermitian boundaries. The EP dynamics facilitate the dynamic generation of condensate states with non-zero momentum. To further substantiate the theoretical findings, numerical simulations are conducted. This study not only unveils the potential condensation of interacting bosons but also offers an approach for the engineering of condensate states.
Related papers
- Tachyonic and parametric instabilities in an extended bosonic Josephson Junction [0.0]
We study the dynamics and decay of quantum phase coherence for Bose-Einstein condensates in tunnel-coupled quantum wires.
We investigate the phenomenon of self-trapping in the relative population imbalance of the two condensates.
We discuss realistic parameters for experimental realizations of the $pi$-mode in ultracold atom setups.
arXiv Detail & Related papers (2024-10-14T14:22:49Z) - Non-Hermitian ultra-strong bosonic condensation through interaction-induced caging [2.2230089845369094]
We uncover a new mechanism whereby the triple interplay of non-Hermitian pumping, bosonic interactions and nontrivial band topology leads to ultra-strong bosonic condensation.
The extent of condensation goes beyond what is naively expected from the interaction-induced trapping of non-Hermitian pumped states.
arXiv Detail & Related papers (2024-10-02T06:09:13Z) - Frequency-resolved Purcell effect for the dissipative generation of
steady-state entanglement [49.1574468325115]
We report a driven-dissipative mechanism to generate stationary entangled $W$ states among strongly-interacting quantum emitters placed within a cavity.
The non-harmonic energy structure of the interacting ensemble allows this transition to be resonantly selected by the cavity.
Evidence of this purely dissipative mechanism should be observable in state-of-the-art cavity QED systems in the solid-state.
arXiv Detail & Related papers (2023-12-19T18:04:22Z) - Unconditional Wigner-negative mechanical entanglement with
linear-and-quadratic optomechanical interactions [62.997667081978825]
We propose two schemes for generating Wigner-negative entangled states unconditionally in mechanical resonators.
We show analytically that both schemes stabilize a Wigner-negative entangled state that combines the entanglement of a two-mode squeezed vacuum with a cubic nonlinearity.
We then perform extensive numerical simulations to test the robustness of Wigner-negative entanglement attained by approximate CPE states stabilized in the presence of thermal decoherence.
arXiv Detail & Related papers (2023-02-07T19:00:08Z) - Reaction-diffusive dynamics of number-conserving dissipative quantum
state preparation [0.0]
We show the emergence of a diffusive regime for the particle and hole density modes at intermediate length- and time-scales.
We also identify processes that limit the diffusive behavior of this mode at the longest length- and time-scales.
Strikingly, we find that these processes lead to a reaction-diffusion dynamics governed by the Fisher-Kolmogorov-Petrovsky-Piskunov equation.
arXiv Detail & Related papers (2023-01-12T19:11:04Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Dynamic transition from insulating state to eta-pairing state in a
composite non-Hermitian system [0.0]
We study the dynamic transition from a trivial insulating state to an eta-pairing state in a composite non-Hermitian Hubbard system.
The speed of relaxation of the off-diagonal long-range order pair state depends on the order of the exceptional point.
arXiv Detail & Related papers (2021-12-20T13:12:37Z) - Non-equilibrium stationary states of quantum non-Hermitian lattice
models [68.8204255655161]
We show how generic non-Hermitian tight-binding lattice models can be realized in an unconditional, quantum-mechanically consistent manner.
We focus on the quantum steady states of such models for both fermionic and bosonic systems.
arXiv Detail & Related papers (2021-03-02T18:56:44Z) - Bose-Einstein condensate soliton qubit states for metrological
applications [58.720142291102135]
We propose novel quantum metrology applications with two soliton qubit states.
Phase space analysis, in terms of population imbalance - phase difference variables, is also performed to demonstrate macroscopic quantum self-trapping regimes.
arXiv Detail & Related papers (2020-11-26T09:05:06Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Atomic self-organization emerging from tunable quadrature coupling [5.624813092014403]
We propose a novel scheme to couple two density-wave degrees of freedom of a BEC to two quadratures of the cavity field.
We unravel a dynamically unstable state induced by the cavity dissipation.
Our work enriches the quantum simulation toolbox in the cavity-quantum-electrodynamics system.
arXiv Detail & Related papers (2020-04-07T13:25:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.