Anomalous Point-Gap Interactions Unveil the Mirage Bath
- URL: http://arxiv.org/abs/2502.09092v1
- Date: Thu, 13 Feb 2025 09:03:47 GMT
- Title: Anomalous Point-Gap Interactions Unveil the Mirage Bath
- Authors: Yue Sun, Tao Shi, Ying Hu,
- Abstract summary: We uncover a novel interaction mechanism by examining a quantum-optical system where quantum emitters interact through a dissipative photon bath.
Although localized photons within the gap should inhibit interactions between emitters in certain regimes, we find that long-range interactions emerge, defying conventional expectations.
Our findings open new avenues in quantum optics, many-body quantum simulations, and offer fresh insights into non-Hermitian topology.
- Score: 14.98116457576415
- License:
- Abstract: Non-Hermitian topology has revolutionized our understanding of energy gaps and band topology, unveiling phases that do not exist within the Hermitian framework. Nonetheless, its fundamental implications for quantum interactions in open quantum systems remain largely unexplored. Here, we uncover a novel interaction mechanism by examining a quantum-optical system where quantum emitters interact through the photonic band-gap of a dissipative photon bath with periodic boundaries, described by a nonreciprocal Su-Schrieffer-Heeger model. Although localized photons within the gap should inhibit interactions between emitters in certain regimes, we find that long-range interactions emerge, defying conventional expectations. These anomalous interactions are mediated by a ``mirage bath" - a virtual bath that unfolds onto a distinct layer of the Riemann surface. This mirage bath generates emitter dynamics identical to those produced by the physical bath but possesses distinct band topology. Crucially, the interactions inherit the topology of the mirage bath, not the physical one. This bath duality is inherent to any dissipative bath with spectral topology, leading to a fundamentally new mechanism for long-range interactions and correlations across the multi-layered Riemann surface, unseen in traditional settings. Our findings open new avenues in quantum optics, many-body quantum simulations, and offer fresh insights into non-Hermitian topology.
Related papers
- Chiral-Extended Photon-Emitter Dressed States in Non-Hermitian Topological Baths [5.9025944049240575]
We predict unconventional quantum optical behaviors of quantum emitters coupled to a non-Hermitian topological bath.
In addition to the Hermitian-like chiral bound states in the middle line gap and skin-mode-like hidden bound states inside the point gap, we identify peculiar in-gap chiral and extended photon-emitter dressed states.
arXiv Detail & Related papers (2024-08-14T15:08:54Z) - Quantized Thouless pumps protected by interactions in dimerized Rydberg tweezer arrays [41.94295877935867]
In the noninteracting case, quantized Thouless pumps can only occur when a topological singularity is encircled adiabatically.
In the presence of interactions, such topological transport can even persist for exotic paths in which the system gets arbitrarily close to the noninteracting singularity.
arXiv Detail & Related papers (2024-02-14T16:58:21Z) - Out-of-equilibrium dynamics of quantum many-body systems with long-range interactions [0.0]
Experimental progress in atomic, molecular, and optical platforms has stimulated strong and broad interest in quantum coherent dynamics.
This Report presents a systematic and organic review of recent advances in the field.
arXiv Detail & Related papers (2023-07-10T18:00:16Z) - Quantum Effects on the Synchronization Dynamics of the Kuramoto Model [62.997667081978825]
We show that quantum fluctuations hinder the emergence of synchronization, albeit not entirely suppressing it.
We derive an analytical expression for the critical coupling, highlighting its dependence on the model parameters.
arXiv Detail & Related papers (2023-06-16T16:41:16Z) - Dipolar quantum solids emerging in a Hubbard quantum simulator [45.82143101967126]
Long-range and anisotropic interactions promote rich spatial structure in quantum mechanical many-body systems.
We show that novel strongly correlated quantum phases can be realized using long-range dipolar interaction in optical lattices.
This work opens the door to quantum simulations of a wide range of lattice models with long-range and anisotropic interactions.
arXiv Detail & Related papers (2023-06-01T16:49:20Z) - Non-Gaussian dynamics of quantum fluctuations and mean-field limit in
open quantum central spin systems [0.0]
Central spin systems are paradigmatic models for nitrogen-vacancy centers and quantum dots.
Here, we derive exact results on the emergent behavior of open quantum central spin systems.
Our findings may become relevant for developing fully quantum descriptions of many-body solid-state devices.
arXiv Detail & Related papers (2023-05-24T20:23:31Z) - Anomalous Behaviors of Quantum Emitters in Non-Hermitian Baths [0.0]
We show that a single quantum emitter coupled to a non-Hermitian bath displays a number of unconventional behaviours.
Our work points toward a rich landscape of anomalous quantum emitter dynamics induced by non-Hermitian baths.
arXiv Detail & Related papers (2022-05-11T13:22:24Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Bridging the gap between topological non-Hermitian physics and open
quantum systems [62.997667081978825]
We show how to detect a transition between different topological phases by measuring the response to local perturbations.
Our formalism is exemplified in a 1D Hatano-Nelson model, highlighting the difference between the bosonic and fermionic cases.
arXiv Detail & Related papers (2021-09-22T18:00:17Z) - Quantum dynamics in low-dimensional topological systems [0.0]
We study the quantum dynamics that take place in low dimensional topological systems, specifically 1D and 2D lattices.
We find that the topological nature of the bath reflects itself in the photon bound states and the effective dipolar interactions between the emitters.
arXiv Detail & Related papers (2020-08-05T10:58:35Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.