OCC-MLLM:Empowering Multimodal Large Language Model For the Understanding of Occluded Objects
- URL: http://arxiv.org/abs/2410.01261v1
- Date: Wed, 2 Oct 2024 06:14:49 GMT
- Title: OCC-MLLM:Empowering Multimodal Large Language Model For the Understanding of Occluded Objects
- Authors: Wenmo Qiu, Xinhan Di,
- Abstract summary: We introduce a novel multimodal model that applies a newly designed visual encoder to understand occluded objects in RGB images.
We also introduce a large-scale visual-language pair dataset for training large-scale visual-language multimodal models.
- Score: 2.850097504458451
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: There is a gap in the understanding of occluded objects in existing large-scale visual language multi-modal models. Current state-of-the-art multimodal models fail to provide satisfactory results in describing occluded objects for visual-language multimodal models through universal visual encoders. Another challenge is the limited number of datasets containing image-text pairs with a large number of occluded objects. Therefore, we introduce a novel multimodal model that applies a newly designed visual encoder to understand occluded objects in RGB images. We also introduce a large-scale visual-language pair dataset for training large-scale visual-language multimodal models and understanding occluded objects. We start our experiments comparing with the state-of-the-art models.
Related papers
- OCC-MLLM-Alpha:Empowering Multi-modal Large Language Model for the Understanding of Occluded Objects with Self-Supervised Test-Time Learning [3.544352024775253]
We introduce a multi-modal large language framework and corresponding self-supervised learning strategy with support of 3D generation.
The initial results demonstrate the improvement of 16.92% in comparison with the state-of-the-art VLM models.
arXiv Detail & Related papers (2024-10-02T06:52:39Z) - MaVEn: An Effective Multi-granularity Hybrid Visual Encoding Framework for Multimodal Large Language Model [49.931663904599205]
MaVEn is an innovative framework designed to enhance the capabilities of Multimodal Large Language Models (MLLMs) in multi-image reasoning.
We show that MaVEn significantly enhances MLLMs' understanding in complex multi-image scenarios, while also improving performance in single-image contexts.
arXiv Detail & Related papers (2024-08-22T11:57:16Z) - Explaining Multi-modal Large Language Models by Analyzing their Vision Perception [4.597864989500202]
This research proposes a novel approach to enhance the interpretability of MLLMs by focusing on the image embedding component.
We combine an open-world localization model with a MLLM, thus creating a new architecture able to simultaneously produce text and object localization outputs from the same vision embedding.
arXiv Detail & Related papers (2024-05-23T14:24:23Z) - Multi-modal Instruction Tuned LLMs with Fine-grained Visual Perception [63.03288425612792]
We propose bfAnyRef, a general MLLM model that can generate pixel-wise object perceptions and natural language descriptions from multi-modality references.
Our model achieves state-of-the-art results across multiple benchmarks, including diverse modality referring segmentation and region-level referring expression generation.
arXiv Detail & Related papers (2024-03-05T13:45:46Z) - Veagle: Advancements in Multimodal Representation Learning [0.0]
This paper introduces a novel approach to enhance the multimodal capabilities of existing models.
Our proposed model Veagle, incorporates a unique mechanism inspired by the successes and insights of previous works.
Our results indicate a improvement of 5-6 % in performance, with Veagle outperforming existing models by a notable margin.
arXiv Detail & Related papers (2024-01-18T12:45:25Z) - Reformulating Vision-Language Foundation Models and Datasets Towards
Universal Multimodal Assistants [65.47222691674074]
Muffin framework employs pre-trained vision-language models to act as providers of visual signals.
UniMM-Chat dataset explores the complementarities of datasets to generate 1.1M high-quality and diverse multimodal instructions.
arXiv Detail & Related papers (2023-10-01T12:35:18Z) - TextBind: Multi-turn Interleaved Multimodal Instruction-following in the Wild [102.93338424976959]
We introduce TextBind, an almost annotation-free framework for empowering larger language models with the multi-turn interleaved instruction-following capabilities.
Our approach requires only image-caption pairs and generates multi-turn multimodal instruction-response conversations from a language model.
To accommodate interleaved image-text inputs and outputs, we devise MIM, a language model-centric architecture that seamlessly integrates image encoder and decoder models.
arXiv Detail & Related papers (2023-09-14T15:34:01Z) - Position-Enhanced Visual Instruction Tuning for Multimodal Large
Language Models [50.07056960586183]
We propose Position-enhanced Visual Instruction Tuning (PVIT) to extend the functionality of Multimodal Large Language Models (MLLMs)
This integration promotes a more detailed comprehension of images for the MLLM.
We present both quantitative experiments and qualitative analysis that demonstrate the superiority of the proposed model.
arXiv Detail & Related papers (2023-08-25T15:33:47Z) - Contextual Object Detection with Multimodal Large Language Models [66.15566719178327]
We introduce a novel research problem of contextual object detection.
Three representative scenarios are investigated, including the language cloze test, visual captioning, and question answering.
We present ContextDET, a unified multimodal model that is capable of end-to-end differentiable modeling of visual-language contexts.
arXiv Detail & Related papers (2023-05-29T17:50:33Z) - MAMO: Masked Multimodal Modeling for Fine-Grained Vision-Language
Representation Learning [23.45678557013005]
We propose a jointly masked multimodal modeling method to learn fine-grained multimodal representations.
Our method performs joint masking on image-text input and integrates both implicit and explicit targets for the masked signals to recover.
Our model achieves state-of-the-art performance on various downstream vision-language tasks, including image-text retrieval, visual question answering, visual reasoning, and weakly-supervised visual grounding.
arXiv Detail & Related papers (2022-10-09T06:31:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.